Shan-xia Xiong, Jian-lei Kuang, Qian-fang Zheng, Ting Xiao, Wen-xiu Liu, Qi Wang, Peng Jiang,  and Wen-bin Cao, Effects of Si/Al, Na/Al and H2O/Na2O molar ratios on formaldehyde barrier properties of inorganic aluminosilicate coatings, Int. J. Miner. Metall. Mater., 28(2021), No. 11, pp. 1868-1874. https://doi.org/10.1007/s12613-020-2197-7
Cite this article as:
Shan-xia Xiong, Jian-lei Kuang, Qian-fang Zheng, Ting Xiao, Wen-xiu Liu, Qi Wang, Peng Jiang,  and Wen-bin Cao, Effects of Si/Al, Na/Al and H2O/Na2O molar ratios on formaldehyde barrier properties of inorganic aluminosilicate coatings, Int. J. Miner. Metall. Mater., 28(2021), No. 11, pp. 1868-1874. https://doi.org/10.1007/s12613-020-2197-7
Research Article

Effects of Si/Al, Na/Al and H2O/Na2O molar ratios on formaldehyde barrier properties of inorganic aluminosilicate coatings

+ Author Affiliations
  • Corresponding authors:

    Jian-lei Kuang    E-mail: jlkuang@ustb.edu.cn

    Wen-bin Cao    E-mail: wbcao@ustb.edu.cn

  • Received: 27 July 2020Revised: 17 September 2020Accepted: 19 September 2020Available online: 19 September 2020
  • Wood-based panels containing urea-formaldehyde resin result in the long-term release of formaldehyde and threaten human health. In this study, inorganic aluminosilicate coatings prepared by combining metakaolin, silica fume, NaOH, and H2O were applied to the surfaces of wood-based panels to obstruct formaldehyde release. The Si/Al, Na/Al, and H2O/Na2O molar ratios of the coatings were regulated to investigate their effects on the structure and formaldehyde-resistant barrier properties of coatings. Results showed that the cracks in the coatings gradually disappeared and the formaldehyde resistance rates of the barrier increased as the Si/Al molar ratio was increased from 1.6 to 2.2. This value also increased as the Na/Al molar ratio was increased from 0.9 to 1.2 because of the improvement of the degree of polymerization. As the H2O/Na2O molar ratio was increased from 12 to 15, the thickness of the dry film decreased gradually and led to the reduction in the formaldehyde resistance rate. When the Si/Al, Na/Al, and H2O/Na2O molar ratios were 2.2, 1.2, and 12, respectively, the inorganic aluminosilicate coating showed good performance as a formaldehyde-resistant barrier and its formaldehyde resistance rate could reach up to 83.2%.

  • loading
  • [1]
    X.J. Tang, Y. Bai, A. Duong, M.T. Smith, L.Y. Li, and L.P. Zhang, Formaldehyde in China: Production, consumption, exposure levels, and health effects, Environ. Int., 35(2009), No. 8, p. 1210. doi: 10.1016/j.envint.2009.06.002
    [2]
    M.G. Jakab, T. Klupp, K. Besenyei, A. Biró, J. Major, and A. Tompa, Formaldehyde-induced chromosomal aberrations and apoptosis in peripheral blood lymphocytes of personnel working in pathology departments, Mutat. Res. Genet. Toxicol. Environ. Mutagen., 698(2010), No. 1-2, p. 11. doi: 10.1016/j.mrgentox.2010.02.015
    [3]
    F.W. Sousa, I.B. Caracas, R.F. Nascimento, and R.M. Cavalcante, Cavalcante, Exposure and cancer risk assessment for formaldehyde and acetaldehyde in the hospitals, Fortaleza-Brazil, Build. Environ., 46(2011), No. 11, p. 2115. doi: 10.1016/j.buildenv.2011.04.006
    [4]
    Y. Gu, L. Cheng, Z.B. Gu, Y. Hong, Z.F. Li, and C.M. Li, Preparation, characterization and properties of starch-based adhesive for wood-based panels, Int. J. Biol. Macromol., 134(2019), p. 247. doi: 10.1016/j.ijbiomac.2019.04.088
    [5]
    X. Hao and D.B. Fan, Preparation and characterization of epoxy-crosslinked soy protein adhesive, J. Adhes. Sci. Technol., 32(2018), No. 24, p. 2682. doi: 10.1080/01694243.2018.1517488
    [6]
    M. Hazwan Hussin, A.A. Aziz, A. Iqbal, M.N.M. Ibrahim, and N.H.A. Latif, Development and characterization novel bio-adhesive for wood using kenaf core (Hibiscus cannabinus) lignin and glyoxal, Int. J. Biol. Macromol., 122(2019), p. 713. doi: 10.1016/j.ijbiomac.2018.11.009
    [7]
    F. Dodangeh, M.S. Seyed Dorraji, M.H. Rasoulifard, and H.R. Ashjari, Synthesis and characterization of alkoxy silane modified polyurethane wood adhesive based on epoxidized soybean oil polyester polyol, Composites Part B, 187(2020), art. No. 107857. doi: 10.1016/j.compositesb.2020.107857
    [8]
    A. Ghani, Z. Ashaari, P. Bawon, and S.H. Lee, Reducing formaldehyde emission of urea formaldehyde-bonded particleboard by addition of amines as formaldehyde scavenger, Build. Environ., 142(2018), p. 188. doi: 10.1016/j.buildenv.2018.06.020
    [9]
    P.H.G. De Cademartori, M.A. Artner, R. Alves de Freitas, and W.L.E. Magalhães, Alumina nanoparticles as formaldehyde scavenger for urea-formaldehyde resin: Rheological and in situ cure performance, Composites Part B, 176(2019), art. No. 107281. doi: 10.1016/j.compositesb.2019.107281
    [10]
    M. Khonakdar Dazmiri, M. Valizadeh Kiamahalleh, A. Dorieh, and A. Pizzi, Effect of the initial F/U molar ratio in urea-formaldehyde resins synthesis and its influence on the performance of medium density fiberboard bonded with them, Int. J. Adhes. Adhes., 95(2019), art. No. 102440. doi: 10.1016/j.ijadhadh.2019.102440
    [11]
    K.W. Kim, S. Kim, H.J. Kim, and J.C. Park, Formaldehyde and TVOC emission behaviors according to finishing treatment with surface materials using 20 L chamber and FLEC, J. Hazard. Mater., 177(2010), No. 1-3, p. 90. doi: 10.1016/j.jhazmat.2009.09.060
    [12]
    Y. Liu and X.D. Zhu, Measurement of formaldehyde and VOCs emissions from wood-based panels with nanomaterial-added melamine-impregnated paper, Constr. Build. Mater., 66(2014), p. 132. doi: 10.1016/j.conbuildmat.2014.05.088
    [13]
    X.D. Zhu, Y. Liu, and J. Shen, Volatile organic compounds (VOCs) emissions of wood-based panels coated with nanoparticles modified water based varnish, Eur. J. Wood Wood Prod., 74(2016), No. 4, p. 601. doi: 10.1007/s00107-016-1012-7
    [14]
    S. Kim, Control of formaldehyde and TVOC emission from wood-based flooring composites at various manufacturing processes by surface finishing, J. Hazard. Mater., 176(2010), No. 1-3, p. 14. doi: 10.1016/j.jhazmat.2009.03.113
    [15]
    J.M. Herrera-Alonso, E. Marand, J. Little, and S.S. Cox, Polymer/clay nanocomposites as VOC barrier materials and coatings, Polymer, 50(2009), No. 24, p. 5744. doi: 10.1016/j.polymer.2009.09.054
    [16]
    J.A. Kim, S. Kim, H.J. Kim, and J. Seo, Measurements of formaldehyde and TVOC emission from paints and coating materials using small chamber method for building composites, J. Wuhan Univ. Technol. Mater. Sci. Ed., 27(2012), No. 1, p. 120. doi: 10.1007/s11595-012-0420-8
    [17]
    Z.H. Zhang, X. Yao, and H.J. Zhu, Potential application of geopolymers as protection coatings for marine concrete: II. Microstructure and anticorrosion mechanism, Appl. Clay Sci., 49(2010), No. 1-2, p. 7. doi: 10.1016/j.clay.2010.04.024
    [18]
    Z.H. Zhang, X. Yao, and H.J. Zhu, Potential application of geopolymers as protection coatings for marine concrete: I. Basic properties, Appl. Clay Sci., 49(2010), No. 1-2, p. 1. doi: 10.1016/j.clay.2010.01.014
    [19]
    Y.C. Wang and J.P. Zhao, Facile preparation of slag or fly ash geopolymer composite coatings with flame resistance, Constr. Build. Mater., 203(2019), p. 655. doi: 10.1016/j.conbuildmat.2019.01.097
    [20]
    A. Nmiri, M. Duc, N. Hamdi, O. Yazoghli-Marzouk, and E. Srasra, Replacement of alkali silicate solution with silica fume in metakaolin-based geopolymers, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 555. doi: 10.1007/s12613-019-1764-2
    [21]
    Z. Liu, N.N. Shao, T.Y. Huang, J.F. Qin, D.M. Wang, and Y. Yang, Effect of SiO2/Na2O mole ratio on the properties of foam geopolymers fabricated from circulating fluidized bed fly ash, Int. J. Miner. Metall. Mater., 21(2014), No. 6, p. 620. doi: 10.1007/s12613-014-0950-5
    [22]
    C. Ridtirud, P. Chindaprasirt, and K. Pimraksa, Factors affecting the shrinkage of fly ash geopolymers, Int. J. Miner. Metall. Mater., 18(2011), No. 1, p. 100. doi: 10.1007/s12613-011-0407-z
    [23]
    M. Lahoti, P. Narang, K.H. Tan, and E.H. Yang, Mix design factors and strength prediction of metakaolin-based geopolymer, Ceram. Int., 43(2017), No. 14, p. 11433. doi: 10.1016/j.ceramint.2017.06.006
    [24]
    Y.S. Zhang, W. Sun, and Z.J. Li, Composition design and microstructural characterization of calcined Kaolin-based geopolymer cement, Appl. Clay Sci., 47(2010), No. 3-4, p. 271. doi: 10.1016/j.clay.2009.11.002
    [25]
    G.M. Nasab, F. Golestanifard, and K.J.D. Mackenzie, The effect of the SiO2/Na2O ratio in the structural modification of metakaolin-based geopolymers studied by XRD, FTIR and MAS-NMR, J. Ceram. Sci. Technol., 5(2014), No. 3, p. 185.
    [26]
    J.W. Phair and J.S.J. van Deventer, Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers, Int. J. Miner. Process., 66(2002), No. 1-4, p. 121. doi: 10.1016/S0301-7516(02)00013-3
    [27]
    T. Uchino, T. Sakka, K. Hotta, and M. Iwasaki, Attenuated toatal reflectance Fourier-transform infrared spectra of a hydrated sodium soilicate glass, J. Am. Ceram. Soc., 72(1989), No. 11, p. 2173. doi: 10.1111/j.1151-2916.1989.tb06051.x
    [28]
    Q. Wan, F. Rao, S.X. Song, R.E. García, R.M. Estrella, C.L. Patiño, and Y.M. Zhang, Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios, Cem. Concr. Compos., 79(2017), p. 45. doi: 10.1016/j.cemconcomp.2017.01.014
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Share Article

    Article Metrics

    Article Views(1870) PDF Downloads(27) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return