Cite this article as: |
Qianbing You, Ji Xiong, Tianen Yang, Tao Hua, Yunliang Huo, and Junbo Liu, Effect of cermet substrate characteristics on the microstructure and properties of TiAlN coatings, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 547-556. https://doi.org/10.1007/s12613-020-2198-6 |
Ji Xiong
The composition and structure of substrate materials have important influences on coating performance, especially in terms of bonding strength and coating hardness, which determine whether the coating can be used for a given application. In this study, a TiAlN coating is deposited on Ti(C,N)-based cermet (TC) substrates with 0wt%–20wt% WC by arc ion plating. The influence of cermet substrate characteristics on the structure and properties of the TiAlN coating is then researched. Results show that the TiAlN coating deposited on the TC substrate has a columnar grain structure. As WC increases, the strength ratio of I(111)/I(200) and adhesive strength of TiAlN gradually increases. In the absence of WC in the substrate, the preferred orientation of the TiAlN coating is (200). As WC increases, the preferred orientation of the TiAlN coating becomes (111) and (200). Notable differences in adhesive strength between the coating and substrate could be attributed to the microstructure and composition of the latter. Scratching results show that the adhesive strengths of the TiAlN coating on the 0wt%–20wt% WC cermet substrate are 52–65 N. Among the coatings obtained that on the TC substrate with 15wt% WC presents the highest H/E and H3/E2, which indicates that this coating also features the best wear resistance. The failure mechanisms of the coated tools include coating peeling, adhesive wear, and abrasive wear. As the cutting speed increases, the degree of flank wear increases and the durability of the coating decreases accordingly. Increases in WC result in an initial decrease followed by a gradual increase in the flank wear of the coated cermet inserts.
[1] |
A. Rajabi, M.J. Ghazali, and A.R. Daud, Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet — A review, Mater. Des., 67(2015), p. 95. doi: 10.1016/j.matdes.2014.10.081
|
[2] |
M.X. Liang, W.C. Wan, Z.X. Guo, J. Xiong, G.B. Dong, X.M. Zheng, Y. Chen, and P. Liu, Erosion-corrosion behavior of Ti(C,N)-based cermets with different TiN contents, Int. J. Refract. Met. Hard Mater., 43(2014), p. 322. doi: 10.1016/j.ijrmhm.2013.10.006
|
[3] |
I. Hussainova, Effect of microstructure on the erosive wear of titanium carbide-based cermets, Wear, 255(2003), No. 1-6, p. 121. doi: 10.1016/S0043-1648(03)00198-4
|
[4] |
C.H. Yi, H.Y. Fan, J. Xiong, Z.X. Guo, G.B. Dong, W.C. Wan, and H.S. Chen, Effect of WC content on the microstructures and corrosion behavior of Ti(C,N)-based cermets, Ceram. Int., 39(2013), No. 1, p. 503. doi: 10.1016/j.ceramint.2012.06.055
|
[5] |
D. Mari, S. Bolognini, T. Viatte, and W. Benoit, Study of the mechanical properties of TiCN–WC–CO hardmetals by the interpretation of internal friction spectra, Int. J. Refract. Met. Hard Mater., 19(2001), No. 4-6, p. 257. doi: 10.1016/S0263-4368(01)00037-3
|
[6] |
W.T. Kwon, J.S. Park, S.W. Kim, and S. Kang, Effect of WC and group IV carbides on the cutting performance of Ti(C,N) cermet tools, Int. J. Mach. Tools Manuf., 44(2004), No. 4, p. 341. doi: 10.1016/j.ijmachtools.2003.10.023
|
[7] |
T.J. Li, J. Xiong, Z.X. Guo, T.E. Yang, M. Yang, and H. Du, Structures and properties of TiAlCrN coatings deposited on Ti(C,N)-based cermets with various WC contents, Int. J. Refract. Met. Hard Mater., 69(2017), p. 247. doi: 10.1016/j.ijrmhm.2017.08.020
|
[8] |
P. Ettmayer, H. Kolaska, W. Lengauer, and K. Dreyer, Ti(C,N) cermets—Metallurgy and properties, Int. J. Refract. Met. Hard Mater., 13(1995), No. 6, p. 343. doi: 10.1016/0263-4368(95)00027-G
|
[9] |
J. Wang, Y. Liu, P. Zhang, J.C. Peng, J.W. Ye, and M.J. Tu, Effect of WC on the microstructure and mechanical properties in the Ti(C0.7N0.3)–xWC–Mo2C–(Co, Ni) system, Int. J. Refract. Met. Hard Mater., 27(2009), No. 1, p. 9. doi: 10.1016/j.ijrmhm.2008.01.010
|
[10] |
J. Qu, W.H. Xiong, D.M. Ye, Z.H. Yao, W.J. Liu, and S.J. Lin, Effect of WC content on the microstructure and mechanical properties of Ti(C0.5N0.5)–WC–Mo–Ni cermets, Int. J. Refract. Met. Hard Mater., 28(2010), No. 2, p. 243. doi: 10.1016/j.ijrmhm.2009.10.005
|
[11] |
T.S. Kumar, S.B. Prabu, G. Manivasagam, and K.A. Padmanabhan, Comparison of TiAlN, AlCrN, and AlCrN/TiAlN coatings for cutting-tool applications, Int. J. Miner. Metall. Mater., 21(2014), No. 8, p. 796. doi: 10.1007/s12613-014-0973-y
|
[12] |
S.L. Zhao, J. Zhang, Z. Zhang, S.H. Wang, and Z.G. Zhang, Microstructure and mechanical properties of (Ti,Al,Zr)N/(Ti,Al,Zr,Cr)N films on cemented carbide substrates, Int. J. Miner. Metall. Mater., 21(2014), No. 1, p. 77. doi: 10.1007/s12613-014-0868-y
|
[13] |
A. Kulkarni, V. Sargade, and C. More, Machinability investigation of AISI 304 austenitic stainless steels using multilayer AlTiN/TiAlN coated carbide inserts, Procedia Manuf., 20(2018), p. 548. doi: 10.1016/j.promfg.2018.02.082
|
[14] |
V. Bonu, M. Jeevitha, V. Praveen Kumar, G. Srinivas, Siju, and H.C. Barshilia, Solid particle erosion and corrosion resistance performance of nanolayered multilayered Ti/TiN and TiAl/TiAlN coatings deposited on Ti6Al4V substrates, Surf. Coat. Technol., 387(2020), art. No. 125531. doi: 10.1016/j.surfcoat.2020.125531
|
[15] |
F.Y. Cao, P. Munroe, Z.F. Zhou, and Z.H. Xie, Mechanically robust TiAlSiN coatings prepared by pulsed-DC magnetron sputtering system: Scratch response and tribological performance, Thin Solid Films, 645(2018), p. 222. doi: 10.1016/j.tsf.2017.10.058
|
[16] |
W. Liu, Q.Q. Chu, R.X. He, M.P. Huang, H.D. Wu, Q.G. Jiang, J. Chen, X. Deng, and S.H. Wu, Preparation and properties of TiAlN coatings on silicon nitride ceramic cutting tools, Ceram. Int., 44(2018), No. 2, p. 2209. doi: 10.1016/j.ceramint.2017.10.177
|
[17] |
G. Xian, J. Xiong, H.B. Zhao, H.Y. Fan, Z.X. Li, and H. Du, Evaluation of the structure and properties of the hard TiAlN–(TiAlN/CrAlSiN)–TiAlN multiple coatings deposited on different substrate materials, Int. J. Refract. Met. Hard Mater., 85(2019), art. No. 105056. doi: 10.1016/j.ijrmhm.2019.105056
|
[18] |
L. Ni, T. Yang, J. Xiong, and Y.H. Fei, Structure and mechanical properties of TiAlCrSiN coatings deposited on Ti(C,N)–NbC–Ni cermets with varied Mo2C contents, Int. J. Refract. Met. Hard Mater., 86(2020), art. No. 105083. doi: 10.1016/j.ijrmhm.2019.105083
|
[19] |
B.B. Chai, J. Xiong, Z.X. Guo, J.B. Liu, L. Ni, Y. Xiao, and C. Chen, Structure and high temperature wear characteristics of CVD coating on HEA-bonded cermet, Ceram. Int., 45(2019), No. 15, p. 19077. doi: 10.1016/j.ceramint.2019.06.152
|
[20] |
S.Y. Ahn and S. Kang, Formation of core/rim structures in Ti(C,N)–WC–Ni cermets via a dissolution and precipitation process, J. Am. Ceram. Soc., 83(2000), No. 6, p. 1489. doi: 10.1111/j.1151-2916.2000.tb01415.x
|
[21] |
Q.B. You, J. Xiong, Z.X. Guo, J.B. Liu, T.E. Yang, and C.T. Qin, Microstructure and properties of CVD coated Ti(C,N)-based cermets with varying WC additions, Int. J. Refract. Met. Hard Mater., 81(2019), p. 299. doi: 10.1016/j.ijrmhm.2019.02.027
|
[22] |
Y. Li, N. Liu, X.B. Zhang, and C.L. Rong, Effect of WC content on the microstructure and mechanical properties of (Ti, W)(C,N)–Co cermets, Int. J. Refract. Met. Hard Mater., 26(2008), No. 1, p. 33. doi: 10.1016/j.ijrmhm.2007.01.003
|
[23] |
D.W. Pashley, The nucleation, growth, structure and epitaxy of thin surface films, Adv. Phys., 14(1965), No. 55, p. 327. doi: 10.1080/00018736500101071
|
[24] |
T.Q. Li, S. Noda, Y. Tsuji, T. Ohsawa, and H. Komiyama, Initial growth and texture formation during reactive magnetron sputtering of TiN on Si(111), J. Vac. Sci. Technol. A: Vac. Surf. Films, 20(2002), No. 3, p. 583. doi: 10.1116/1.1458944
|
[25] |
C.V. Thompson, Grain growth in polycrystalline thin films of semiconductors, Interface Sci., 6(1998), No. 1-2, p. 85.
|
[26] |
C.H. Hsu, C.C. Lee, and W.Y. Ho, Filter effects on the wear and corrosion behaviors of arc deposited (Ti, Al)N coatings for application on cold-work tool steel, Thin Solid Films, 516(2008), No. 15, p. 4826. doi: 10.1016/j.tsf.2007.09.017
|
[27] |
J.M. Lackner, W. Waldhauser, R. Ebner, J. Keckés, and T. Schöberl, Room temperature deposition of (Ti,Al)N and (Ti,Al)(C,N) coatings by pulsed laser deposition for tribological applications, Surf. Coat. Technol., 177-178(2004), p. 447. doi: 10.1016/S0257-8972(03)00911-3
|
[28] |
A. Laor, L. Zevin, J. Pelleg, and N. Croitoru, Anisotropy in residual strains and the lattice parameter of reactive sputter-deposited ZrN films, Thin Solid Films, 232(1993), No. 2, p. 143. doi: 10.1016/0040-6090(93)90001-6
|
[29] |
A. Leyland and A. Matthews, On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behaviour, Wear, 246(2000), No. 1-2, p. 1. doi: 10.1016/S0043-1648(00)00488-9
|
[30] |
T.Y. Tsui, G.M. Pharr, W.C. Oliver, C.S. Bhatia, R.L. White, S. Anders, A. Anders, and I.G. Brown, Nanoindentation and nanoscratching of hard carbon coatings for magnetic disks, MRS Online Proc. Lib., 383(1995), No. 1, p. 447. doi: 10.1557/PROC-383-447
|
[31] |
S.J. Bull, D.G. Bhat, and M.H. Staia, Properties and performance of commercial TiCN coatings. Part 2: Tribological performance, Surf. Coat. Technol., 163-164(2003), p. 507. doi: 10.1016/S0257-8972(02)00651-5
|
[32] |
S.J. Bull, Failure modes in scratch adhesion testing, Surf. Coat. Technol., 50(1991), No. 1, p. 25. doi: 10.1016/0257-8972(91)90188-3
|
[33] |
G.S. Fox-Rabinovich, A.I. Kovalev, M.H. Aguirre, B.D. Beake, K. Yamamoto, S.C. Veldhuis, J.L. Endrino, D.L. Wainstein, and A.Y. Rashkovskiy, Design and performance of AlTiN and TiAlCrN PVD coatings for machining of hard to cut materials, Surf. Coat. Technol., 204(2009), No. 4, p. 489. doi: 10.1016/j.surfcoat.2009.08.021
|
[34] |
G.S. Fox-Rabinovich, K. Yamamoto, S.C. Veldhuis, A.I. Kovalev, L.S. Shuster, and L. Ning, Self-adaptive wear behavior of nano-multilayered TiAlCrN/WN coatings under severe machining conditions, Surf. Coat. Technol., 201(2006), No. 3-4, p. 1852. doi: 10.1016/j.surfcoat.2006.03.010
|
[35] |
X.P. Ren and Z.Q. Liu, Microstructure refinement and work hardening in a machined surface layer induced by turning Inconel 718 super alloy, Int. J. Miner. Metall. Mater., 25(2018), No. 8, p. 937. doi: 10.1007/s12613-018-1643-2
|