Yan-yun Bai, Jin Gao, Tao Guo, Ke-wei Gao, Alex A. Volinsky, and Xiao-lu Pang, Review of the fatigue behavior of hard coating–ductile substrate systems, Int. J. Miner. Metall. Mater., 28(2021), No. 1, pp. 46-55. https://doi.org/10.1007/s12613-020-2203-0
Cite this article as:
Yan-yun Bai, Jin Gao, Tao Guo, Ke-wei Gao, Alex A. Volinsky, and Xiao-lu Pang, Review of the fatigue behavior of hard coating–ductile substrate systems, Int. J. Miner. Metall. Mater., 28(2021), No. 1, pp. 46-55. https://doi.org/10.1007/s12613-020-2203-0
Invited Review

Review of the fatigue behavior of hard coating–ductile substrate systems

+ Author Affiliations
  • Corresponding author:

    Xiao-lu Pang    E-mail: pangxl@mater.ustb.edu.cn

  • Received: 10 September 2020Revised: 27 September 2020Accepted: 30 September 2020Available online: 1 October 2020
  • With the wide application of coating materials in aerospace and other fields, their safety under fatigue conditions in service is important. However, research on the fatigue properties of ceramic hard coatings started late, and a unified standard is yet to be established to evaluate the fatigue life of hard coating–ductile substrate systems. Studies also present different opinions on whether coatings can improve or reduce the fatigue life of substrates. In this paper, the influence of the properties of ceramic coatings on fatigue performance is reviewed, and the effects of coating on the mechanism of fatigue crack initiation in substrates are discussed, aiming to help readers understand the fatigue behavior of hard coating–ductile substrate systems.

  • loading
  • [1]
    W. Pawlak, K.J. Kubiak, B.G. Wendler, and T.G. Mathia, Wear resistant multilayer nanocomposite WC1−x/C coating on Ti–6Al–4V titanium alloy, Tribol. Int, 82(2015), p. 400. doi: 10.1016/j.triboint.2014.05.030
    [2]
    S. Luo, L. Zheng, H. Luo, and C.S. Luo, A ceramic coating on carbon steel and its superhydrophobicity, Appl. Surf. Sci., 486(2019), p. 371. doi: 10.1016/j.apsusc.2019.04.235
    [3]
    S. Baragetti, E. Borzini, Ž. Božic, and E.V. Arcieri, On the fatigue strength of uncoated and DLC coated 7075-T6 aluminum alloy, Eng. Fail. Anal., 102(2019), p. 219. doi: 10.1016/j.engfailanal.2019.04.035
    [4]
    A. Inspektor and P.A. Salvador, Architecture of PVD coatings for metalcutting applications: A review, Surf. Coat. Technol., 257(2014), p. 138. doi: 10.1016/j.surfcoat.2014.08.068
    [5]
    J.A. Ewing and J.C.W. Humfrey, The fracture of metals under repeated alternations of stress, Proc. Roy. Soc. Lond., 71(1903), p. 79. doi: 10.1098/rspl.1902.0065
    [6]
    R.Y. Feng, W.X. Wang, Z.F. Yan, D.H. Wang, S.P. Wan, and N. Shi, Fatigue limit assessment of a 6061 aluminum alloy based on infrared thermography and steady ratcheting effect, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1301. doi: 10.1007/s12613-019-1942-2
    [7]
    A. Albedah, B.B. Bouiadjra, S.M.A.K. Mohammed, and F. Benyahia, Fractographic analysis of the overload effect on fatigue crack growth in 2024-T3 and 7075-T6 Al alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 83. doi: 10.1007/s12613-019-1896-4
    [8]
    D.R. Brame and T. Evans, Deformation of thin films on solid substrates, Philos. Mag., 3(1958), No. 33, p. 971. doi: 10.1080/14786435808243240
    [9]
    Y.S. Hong, Z.Q. Lei, C.Q. Sun, and A.G. Zhao, Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels, Int. J. Fatigue, 58(2014), p. 144. doi: 10.1016/j.ijfatigue.2013.02.023
    [10]
    H. Mughrabi, Microstructural mechanisms of cyclic deformation, fatigue crack initiation and early crack growth, Phil. Trans. R. Soc. A, 373(2015), No. 2038, art. No. 20140132. doi: 10.1098/rsta.2014.0132
    [11]
    S. Hotta, Y. Itou, K. Saruki, and T. Arai, Fatigue strength at a number of cycles of thin hard coated steels with quench-hardened substrates, Surf. Coat. Technol., 73(1995), No. 1-2, p. 5. doi: 10.1016/0257-8972(94)02356-5
    [12]
    K.D. Bouzakis, N. Vidakis, T. Leyendecker, O. Lemmer, H.G. Fuss, and G. Erkens, Determination of the fatigue behaviour of thin hard coatings using the impact test and a FEM simulation, Surf. Coat. Technol., 86-87(1996), p. 549. doi: 10.1016/S0257-8972(96)02993-3
    [13]
    S. Peraud, P. Villechaise, and J. Mendez, Effects of dynamically ion mixed thin coatings on fatigue damage processes in titanium alloys, Antimicrob. Agents Chemother., 21(2013), No. 6, p. 1081.
    [14]
    M.P. Nascimento, R.C. Souza, W.L. Pigatin, and H.J.C. Voorwald, Effects of surface treatments on the fatigue strength of AISI 4340 aeronautical steel, Int. J. Fatigue, 23(2001), No. 7, p. 607. doi: 10.1016/S0142-1123(01)00015-9
    [15]
    H.J.C. Voorwald, R.C. Souza, W.L. Pigatin, and M.O.H. Cioffi, Evaluation of WC−17Co and WC−10Co−4Cr thermal spray coatings by HVOF on the fatigue and corrosion strength of AISI 4340 steel, Surf. Coat. Techhol., 190(2005), No. 2-3, p. 155. doi: 10.1016/j.surfcoat.2004.08.181
    [16]
    S. Baragetti, G.M. Lavecchia, and A. Terranova, Variables affecting the fatigue resistance of PVD-coated components, Int. J. Fatigue, 27(2005), No. 10-12, p. 1541. doi: 10.1016/j.ijfatigue.2005.06.011
    [17]
    K.R. Kim, C.M. Suh, R.I. Murakami, and C.W. Chung, Effect of intrinsic properties of ceramic coatings on fatigue behavior of Cr–Mo–V steels, Surf. Coat. Technol., 171(2003), No. 1-3, p. 15. doi: 10.1016/S0257-8972(03)00229-9
    [18]
    A. Ibrahim and C.C. Berndt, Fatigue and deformation of HVOF sprayed WC-Co coatings and hard chrome plating, Mater. Sci. Eng. A, 456(2007), No. 1-2, p. 114. doi: 10.1016/j.msea.2006.12.030
    [19]
    M.Y.P. Costa, M.L.R. Venditti, H.J.C. Voorwald, M.O.H. Cioffi, and T.G. Cruz, Effect of WC−10%Co−4%Cr coating on the Ti−6Al−4V alloy fatigue strength, Mater. Sci. Eng. A, 507(2009), No. 1-2, p. 29. doi: 10.1016/j.msea.2008.11.068
    [20]
    F. Yıldız, A.F. Yetim, A. Alsaran, A. Çelik, İ. Kaymaz, and İ. Efeoğlu, Plain and fretting fatigue behavior of Ti6Al4V alloy coated with TiAlN thin film, Tribol. Int., 66(2013), p. 307. doi: 10.1016/j.triboint.2013.06.006
    [21]
    J.G. La Barbera-Sosa, Y.Y. Santana, C. Villalobos-Gutiérrez, D. Chicot, J. Lesage, X. Decoopman, A. Iost, M.H. Staia, and E.S. Puchi-Cacrera, Fatigue behavior of a structural steel coated with a WC–10Co–4Cr/Colmonoy 88 deposit by HVOF thermal spraying, Surf. Coat. Technol., 220(2013), p. 248. doi: 10.1016/j.surfcoat.2012.05.098
    [22]
    C.M. Lee, J.P. Chu, W.Z. Chang, J.W. Lee, J.S.C. Jang, and P.K. Liaw, Fatigue property improvements of Ti–6Al–4V by thin film coatings of metallic glass and TiN: A comparison study, Thin Solid Films, 561(2014), p. 33. doi: 10.1016/j.tsf.2013.08.027
    [23]
    H. Kovaci, A.F. Yetim, Ö. Baran, and A. Çelik, Fatigue crack growth behavior of DLC coated AISI 4140 steel under constant and variable amplitude loading conditions, Surf. Coat. Technol., 304(2016), p. 316. doi: 10.1016/j.surfcoat.2016.07.045
    [24]
    Y. Uematsu, T. Kakiuchi, T. Teratani, Y. Harada, and K. Tokaji, Improvement of corrosion fatigue strength of magnesium alloy by multilayer diamond-like carbon coatings, Surf. Coat. Technol., 205(2011), No. 8-9, p. 2778. doi: 10.1016/j.surfcoat.2010.10.040
    [25]
    A.M. Engwall, Z. Rao, and E. Chason, Origins of residual stress in thin films: Interaction between microstructure and growth kinetics, Mater. Des., 110(2016), p. 616. doi: 10.1016/j.matdes.2016.07.089
    [26]
    D.F. Arias, A. Gómez, R.M. Souza, and J.M. Vélez, Residual stress gradient of Cr and CrN thin films, Mater. Chem. Phys., 204(2018), p. 269. doi: 10.1016/j.matchemphys.2017.10.053
    [27]
    S.S. Zhao, H. Du, W.G. Hua, J. Gong, J.B. Li, and C. Sun, The depth distribution of residual stresses in (Ti, Al)N films: Measurement and analysis, J. Mater. Res., 22(2007), No. 10, p. 2659. doi: 10.1557/JMR.2007.0363
    [28]
    D.S. Rickerby, B.A. Bellamy, and A.M. Jones, Internal stress and adherence of titanium nitride coatings, J. Vac. Sci. Technol. A, 4(1986), No. 6, p. 2809. doi: 10.1116/1.573683
    [29]
    C.M. Suh, B.W. Hwang, and R.I. Murakami, Behaviors of residual stress and high-temperature fatigue life in ceramic coatings produced by PVD, Mater. Sci. Eng. A, 343(2003), p. 1. doi: 10.1016/S0921-5093(02)00327-1
    [30]
    B.S. Saini and V.K. Gupta, Effect of WC/C PVD coating on fatigue behaviour of case carburized SAE8620 steel, Surf. Coat. Technol., 205(2010), No. 2, p. 511. doi: 10.1016/j.surfcoat.2010.07.022
    [31]
    D. Yonekura, A. Tsukuda, R.I. Murakami, and K. Hanaguri, Fatigue properties of nitride Cr-Mo steel with CrN thin film deposited by AIP method, Int. J. Mod. Phys. B, 17(2003), p. 1554. doi: 10.1142/S0217979203019319
    [32]
    Y.Y. Bai, Y.T. Xi, K.W. Gao, H.S. Yang, X.L. Pang, and A.A. Volinsky, Residual stress control in CrAlN coatings deposited on Ti alloys, Cream. Int., 44(2018), No. 5, p. 4653. doi: 10.1016/j.ceramint.2017.12.037
    [33]
    E.S. Puchi-Cabrera, F. Matinez, I. Herrera, J.A. Berrios, S. Dixit, and D. Bhat, On the fatigue behavior of an AISI 316L stainless steel coated with a PVD TiN deposit, Surf. Coat. Technol., 182(2004), No. 2-3, p. 276. doi: 10.1016/j.surfcoat.2003.07.003
    [34]
    R.H. Oskouei, R.N. Ibrahim, and M.R. Barati, An experimental study on the characteristics and delamination of TiN coatings deposited on Al 7075-T6 under fatigue cycling, Thin Solid Films, 526(2012), p. 155. doi: 10.1016/j.tsf.2012.11.016
    [35]
    M.Y.P. Costa, M.L.R. Venditti, M.O.H. Cioffi, H.J.C. Voorwald, V.A. Guimarães, and R. Ruas, Fatigue behavior of PVD coated Ti–6Al–4V alloy, Int. J. Fatigue, 33(2011), No. 6, p. 759. doi: 10.1016/j.ijfatigue.2010.11.007
    [36]
    S.I. Nishida, N. Hattori, Y. Nakabaru, and A. Tsuchiyama, Fatigue strength improvement of Ti alloy with DLC coating, [in] J.T.M. De Hosson, C.A. Brebbia, and S.I. Nishida, eds., Computer Methods and Experimental Measurements for Surface Effects and Contact Mechanics VIII, Wit Press/Computational Mechanics Publications, Southampton, 55(2007), p. 3.
    [37]
    J.A.M. Ferreira, J.D.M. Costa, and V. Lapa, Fatigue behaviour of 42Cr Mo4 steel with PVD coatings, Int. J. Fatigue, 19(1997), No. 4, p. 293. doi: 10.1016/S0142-1123(97)00007-8
    [38]
    E.S. Puchi-Cabrera, M.H. Staia, E.A. Ochoa-Pérez, D.G. Teer, Y.Y. Santana-Méndez, J.G. La Barbera-Sosa, D. Chicot, and J. Lesage, Fatigue behavior of a 316L stainless steel coated with a DLC film deposited by PVD magnetron sputter ion plating, Mater. Sci. Eng. A, 527(2010), No. 3, p. 498. doi: 10.1016/j.msea.2009.09.030
    [39]
    E. Arslan, Y. Totik, and I. Efeoglu, Comparison of structure and tribological properties of MoS2–Ti films deposited by biased-dc and pulsed-dc, Prog. Org. Coat., 74(2012), No. 4, p. 772. doi: 10.1016/j.porgcoat.2011.10.021
    [40]
    A. Dück, N. Gamer, W. Gesatzke, M. Griepentrog, W. OSterle, M. Sahre, and I. Urban, Ti/TiN multilayer coatings: deposition technique, characterization and mechanical properties, Surf. Coat. Technol., 142-144(2001), p. 579. doi: 10.1016/S0257-8972(01)01171-9
    [41]
    P. Wieciński, J. Smolik, H. Garbacz, and K.J. Kurzydłowski, Failure and deformation mechanisms during indentation in nanostructured Cr/CrN multilayer coatings, Surf. Coat. Technol., 240(2014), p. 23. doi: 10.1016/j.surfcoat.2013.12.006
    [42]
    D. Yonekura, J. Fujita, and K. Miki, Fatigue and wear properties of Ti–6Al–4V alloy with Cr/CrN multilayer coating, Surf. Coat. Technol., 275(2015), p. 232. doi: 10.1016/j.surfcoat.2015.05.014
    [43]
    E.S. Puchicabrera, M.H. Staia, J. Lesage, L. Gil, C. Villalobos-Gutierrez, J. La Barbera-Sosa, E.A. Ochoa-Perez, and E. Le Bourhis, Fatigue behavior of AA7075-T6 aluminum alloy coated with ZrN by PVD, Int. J. Fatigue, 30(2008), No. 7, p. 1220. doi: 10.1016/j.ijfatigue.2007.09.001
    [44]
    G. Cassar, J.C. Avelar-Batista Wilson, S. Banfield, J. Housden, M. Fenech, A. Matthews, and A. Leyland, Evaluating the effects of plasma diffusion processing and duplex diffusion/PVD-coating on the fatigue performance of Ti–6Al–4V alloy, Int. J. Fatigue, 33(2011), No. 9, p. 1313. doi: 10.1016/j.ijfatigue.2011.04.004
    [45]
    M.Y.P. Costa, M.O.H. Cioffi, M.L.R. Venditti, and H.J.C Voorwald, Fatigue fracture behavior of Ti−6Al−4V PVD coated, Procedia Eng., 2(2010), No. 1, p. 1859. doi: 10.1016/j.proeng.2010.03.200
    [46]
    J. Musil, F. Kunc, H. Zeman, and H. Poláková, Relationships between hardness, Young’s modulus and elastic recovery in hard nanocomposite coatings, Surf. Coat. Technol., 154(2002), No. 2-3, p. 304. doi: 10.1016/S0257-8972(01)01714-5
    [47]
    Z.L. Zhang, J. Chen, G.Y. He, and G.J. Yang, Fatigue and mechanical behavior of Ti–6Al–4V Alloy with CrN and TiN coating deposited by magnetic filtered cathodic vacuum arc process, Coatings, 9(2019), No. 10, art. No. 689. doi: 10.3390/coatings9100689
    [48]
    P. Pobedinskas, J.C. Bolsée, W. Dexters, B. Ruttens, V. Mortet, J. D'Haen, J. V. Manca, and K. Haenen, Thickness dependent residual stress in sputtered AlN thin films, Thin Solid Films, 522(2012), p. 180. doi: 10.1016/j.tsf.2012.08.015
    [49]
    H. Akebono, J. Komotori, and H. Suzuki, The effect of coating thickness on fatigue properties of steel thermally sprayed with Ni-based self-fluxing alloy, Int. J. Mod. Phys. B, 20(2006), p. 3599. doi: 10.1142/S0217979206040052
    [50]
    T. Guo, L.J. Qiao, X.L. Pang, and A.A.Volinsky, Brittle film-induced cracking of ductile substrates, Acta Mater., 99(2015), p. 273. doi: 10.1016/j.actamat.2015.07.059
    [51]
    T. Guo, Y.M. Chen, R.H. Cao, X.L. Pang, J.Y. He, and L.J. Qiao, Cleavage cracking of ductile-metal substrates induced by brittle coating fracture, Acta Mater., 152(2018), p. 77. doi: 10.1016/j.actamat.2018.04.017
    [52]
    Y.Y. Bai, Y.T. Xi, K.W. Gao, H.S. Yang, X.L. Pang, X.S. Yang, and A.A Volinsky, Brittle coating effects on fatigue cracks behavior in Ti alloys, Int. J. Fatigue, 125(2019), p. 432. doi: 10.1016/j.ijfatigue.2019.04.017
    [53]
    S. Heinz and D. Eifler, Crack initiation mechanisms of Ti6Al4V in the very high cycle fatigue regime, Int. J. Fatigue, 93(2016), p. 301. doi: 10.1016/j.ijfatigue.2016.04.026
    [54]
    N. Huang, Y.R. Chen, G.J. Cai, C.G. Liu, Z.G. Wang, G. Yiao, H.H. Su, X.H. Liu, and Z.H. Zhen, Research on the fatigue behavior of titanium based biomaterial coated with titanium nitride film by ion beam enhanced deposition, Surf. Coat. Technol., 88(1997), No. 1-3, p. 127. doi: 10.1016/S0257-8972(96)02891-5
    [55]
    C.M. Suh, B.W. Hwang, and K.R. Kim, Effect of ceramic coating thickness on residual stress and fatigue characteristic of 1Cr−1Mo−0.25V steel, Int. J. Mod. Phys. B, 16(2020), No. 1 & 2, p. 181.
    [56]
    S.X. Li, Effects of inclusions on very high cycle fatigue properties of high strength steels, Int. Mater. Rev., 57(2012), No. 2, p. 92. doi: 10.1179/1743280411Y.0000000008
    [57]
    G. Chai, The formation of subsurface non-defect fatigue crack origins, Int. J. Fatigue, 28(2006), No. 11, p. 1533. doi: 10.1016/j.ijfatigue.2005.06.060
    [58]
    Y. Feng, W.Y. Li, C.W. Guo, M.J. Gong, and K. Yang, Mechanical property improvement induced by nanoscaled deformation twins in cold-sprayed Cu coatings, Mater. Sci. Eng. A, 727(2018), p. 119. doi: 10.1016/j.msea.2018.04.113
    [59]
    S.H. Zhou, Z.G. Qiu, and D.C. Zeng, Deformation mechanisms and crack routes of CrAlN coatings, Mater. Charact., 167(2020), art. No. 110491. doi: 10.1016/j.matchar.2020.110491
    [60]
    Y.T. Xi, Y.Y. Bai, K.W. Gao, X.L. Pang, H.S. Yang, L.C. Yan, and A.A. Volinsky, In-situ stress gradient evolution and texture-dependent fracture of brittle ceramic thin films under external load, Cream. Int., 44(2018), No. 7, p. 8176. doi: 10.1016/j.ceramint.2018.01.265
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Share Article

    Article Metrics

    Article Views(2247) PDF Downloads(68) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return