Cite this article as: |
Jiu-han Xiao, Ying Xiong, Li Wang, Xiang-wei Jiang, Dong Wang, Kai-wen Li, Jia-sheng Dong, and Lang-hong Lou, Oxidation behavior of high Hf nickel-based superalloy in air at 900, 1000 and 1100°C, Int. J. Miner. Metall. Mater., 28(2021), No. 12, pp. 1957-1965. https://doi.org/10.1007/s12613-020-2204-z |
Dong Wang E-mail: dwang@imr.ac.cn
To investigate the oxidation behavior of a nickel-based superalloy with high hafnium content (1.34wt%), this study performed isothermal oxidation tests at 900, 1000, and 1100°C for up to 200 h. X-ray diffraction and scanning electron microscopy with energy-dispersive X-ray spectroscopy were applied to study the oxidation behavior. The weight gain of the high Hf nickel-based superalloy exhibited a parabola-like curve, and no spallation of the oxide scale was observed during the oxidation tests. The alloy presented excellent oxidation resistance, and no HfO2 was observed in the oxide scale at 900°C. With the increase of the oxidation temperature to 1000°C, HfO2 particles formed in the spinel phases of the scale, and “peg-like” HfO2 was observed within and beneath the inner layer of Al2O3 after 200 h. As the oxidation temperature rose to 1100°C, “peg-like” HfO2 was observed at the early stage of the oxidation test (within 25 h). The formation mechanism of HfO2 and its impact on oxidation resistance were investigated based on the analysis of the oxidation test results at different temperatures.
[1] |
A.V. Logunov, S.A. Zavodov, and D.V. Danilov, The challenges in development of nickel-based heat-resistant superalloys for gas turbine disks and creation of a new superalloy with increased operational characteristics, Mater. Today: Process., 11(2019), p. 459. doi: 10.1016/j.matpr.2019.01.013
|
[2] |
F. Liu, Z.X. Wang, Z. Wang, J. Zhong, X.K. Wu, Z.J. Qin, Z.H. Li, L.M. Tan, L. Zhao, L.L. Zhu, L. Jiang, L. Huang, L.J. Zhang, and Y. Liu, High-throughput determination of interdiffusivity matrices in Ni−Al−Ti−Cr−Co−Mo−Ta−W multicomponent superalloys and their application in optimization of creep resistance, Mater. Today Commun., 24(2020), art. No. 101018. doi: 10.1016/j.mtcomm.2020.101018
|
[3] |
P. Li, Q.Q. Li, T. Jin, Y.Z. Zhou, J.G. Li, X.F. Sun, and Z.F. Zhang, Effect of Re on low-cycle fatigue behaviors of Ni-based single-crystal superalloys at 900°C, Mater. Sci. Eng. A, 603(2014), p. 84. doi: 10.1016/j.msea.2014.02.073
|
[4] |
T. Zhu, C.Y. Wang, and Y. Gan, Effect of Re in γ phase, γ′ phase and γ/γ′ interface of Ni-based single-crystal superalloys, Acta Mater., 58(2010), No. 6, p. 2045. doi: 10.1016/j.actamat.2009.11.047
|
[5] |
Y.Q. Wang, M. Suneson, and G. Sayre, Synthesis of Hf-modified aluminide coatings on Ni-base superalloys, Surf. Coat. Technol., 206(2011), No. 6, p. 1218. doi: 10.1016/j.surfcoat.2011.08.031
|
[6] |
Z.X. Shi, J.R. Li, and S.Z. Liu, Effect of Hf on stress rupture properties of DD6 single crystal superalloy after long term aging, J. Iron Steel Res. Int., 19(2012), No. 7, p. 66. doi: 10.1016/S1006-706X(12)60115-0
|
[7] |
Y.L. Tang, J.T. Liu, H.Y. Yu, Y.W. Zhang, J. Zhu, and H.W. Cheng, H.Y. Yu, Y.W. Zhang, and J. Zhu, Effect of hafnium on annealing twin formation in as-hot isostatically pressed nickel-based powder metallurgy superalloy, J. Alloys Compd., 772(2019), p. 949. doi: 10.1016/j.jallcom.2018.09.025
|
[8] |
J. Romanowska, J. Morgiel, Ł. Kolek, P. Kwolek, and M. Zagula-Yavorska, Effect of Pd and Hf co-doping of aluminide coatings on pure nickel and CMSX-4 nickel superalloy, Arch. Civ. Mech. Eng., 18(2018), No. 4, p. 1421. doi: 10.1016/j.acme.2018.05.007
|
[9] |
J.S. Hou, J.T. Guo, Y.X. Wu, L.Z. Zhou, and H.Q. Ye, Effect of hafnium on creep behavior of a corrosion resistant nickel base superalloy, Mater. Sci. Eng. A, 527(2010), No. 6, p. 1548. doi: 10.1016/j.msea.2009.11.008
|
[10] |
T. Rangel-Ortiz, F.C. Alcala, V.M. López Hirata, J. Frias-Flores, J.E. Araujo-Osorio, H.J. Dorantes-Rosales, and M.L. Saucedo-Muñoz, Microstructure and tensile properties of a continuous-cast Al–Li–Hf alloy, J. Mater. Process. Technol., 159(2005), No. 2, p. 164. doi: 10.1016/j.jmatprotec.2004.05.003
|
[11] |
H.W. Wang, J.X. Yang, J. Meng, Y.H. Yang, and Y.Z. Zhou, Wettability and interfacial reactions of a low Hf-containing nickel-based superalloy on Al2O3-based, SiO2-based, ZrSiO4, and CoAl2O4 substrates, Ceram. Int., 46(2020), No. 14, p. 22057. doi: 10.1016/j.ceramint.2020.05.212
|
[12] |
X.Y. Chen, Y.Z. Zhou, T. Jin, and X.F. Sun, Effect of C and Hf contents on the interface reactions and wettability between a Ni3Al-based superalloy and ceramic mould material, J. Mater. Sci. Technol., 32(2016), No. 2, p. 177. doi: 10.1016/j.jmst.2015.11.007
|
[13] |
F. Valenza, N. Sobczak, J. Sobczak, R. Nowak, M.L. Muolo, A. Passerone, S. Sitzia, and G. Cacciamani, Wetting and interfacial phenomena in Ni−Cr−Hf/sapphire systems, J. Eur. Ceram. Soc., 40(2020), No. 2, p. 521. doi: 10.1016/j.jeurceramsoc.2019.10.007
|
[14] |
V.K. Tolpygo, K.S. Murphy, and D.R. Clarke, Effect of Hf, Y and C in the underlying superalloy on the rumpling of diffusion aluminide coatings, Acta Mater., 56(2008), No. 3, p. 489. doi: 10.1016/j.actamat.2007.10.006
|
[15] |
M. Zagula-Yavorska, J. Romanowska, M. Pytel, and J. Sieniawski, The microstructure and oxidation resistance of the aluminide coatings deposited by the CVD method on pure nickel and hafnium-doped nickel, Arch. Civ. Mech. Eng., 15(2015), No. 4, p. 862. doi: 10.1016/j.acme.2015.03.006
|
[16] |
H.B. Guo, Y.J. Cui, H. Peng, and S.K. Gong, Improved cyclic oxidation resistance of electron beam physical vapor deposited nano-oxide dispersed β-NiAl coatings for Hf-containing superalloy, Corros. Sci., 52(2010), No. 4, p. 1440. doi: 10.1016/j.corsci.2010.01.009
|
[17] |
I.M. Allam, D.P. Whittle, and J. Stringer, The oxidation behavior of CoCrAI systems containing active element additions, Oxid. Met., 12(1978), No. 1, p. 35. doi: 10.1007/BF00609974
|
[18] |
Y.Q. Wang and M. Suneson, Oxidation behavior of Hf-modified aluminide coatings on Haynes-188 at 1050°C, Surf. Coat. Technol., 215(2013), p. 7. doi: 10.1016/j.surfcoat.2012.07.091
|
[19] |
R. Baldan, R. Guimarães, C.A. Nunes, S.B. Gabriel, and G.C. Coelho, Oxidation behavior of the niobium-modified MAR-M247 superalloy at 1000°C in Air, Oxid. Met., 83(2015), No. 1-2, p. 151. doi: 10.1007/s11085-014-9517-0
|
[20] |
J. Wang, L.Z. Zhou, X.Z. Qin, L.Y. Sheng, J.S. Hou, and J.T. Guo, Primary MC decomposition and its effects on the rupture behaviors in hot-corrosion resistant Ni-based superalloy K444, Mater. Sci. Eng. A, 553(2012), p. 14. doi: 10.1016/j.msea.2012.05.077
|
[21] |
Y.S. Zhao, J. Zhang, Y.S. Luo, B. Zhang, G. Sha, L.F. Li, D.Z. Tang, and Q. Feng, Improvement of grain boundary tolerance by minor additions of Hf and B in a second generation single crystal superalloy, Acta Mater., 176(2019), p. 109. doi: 10.1016/j.actamat.2019.06.054
|
[22] |
C.T. Liu, J. Ma, and X.F. Sun, Oxidation behavior of a single-crystal Ni-base superalloy between 900 and 1000°C in air, J. Alloy. Compd., 491(2010), No. 1-2, p. 522. doi: 10.1016/j.jallcom.2009.10.261
|
[23] |
L. Liu, Yi. Li, and F.H. Wang, Influence of micro-structure on oxidation Behavior of a ni-based superalloy at 1000°C, Mater. Sci. Forum, 595-598(2008), p. 87.
|
[24] |
A.M.S. Costa, E.S.N. Lopes, R.J. Contieri, R. Caram, R. Baldan, G.E. Fuchs, and C.A. Nunes, Microstructural and mechanical characterization of directionally solidified conventional and Nb-modified Mar-M247 superalloy, J. Mater. Eng. Perform., 28(2019), No. 4, p. 2427. doi: 10.1007/s11665-019-04014-1
|
[25] |
A. Sato, Y.L. Chiu, and R.C. Reed, Oxidation of nickel-based single-crystal superalloys for industrial gas turbine applications, Acta Mater., 59(2011), No. 1, p. 225. doi: 10.1016/j.actamat.2010.09.027
|
[26] |
L. Klein, A. Zendegani, M. Palumbo, S.G. Fries, and S. Virtanen, First approach for thermodynamic modelling of the high temperature oxidation behaviour of ternary γ′-strengthened Co−Al−W superalloys, Corros. Sci., 89(2014), p. 1. doi: 10.1016/j.corsci.2014.08.016
|
[27] |
H.Q. Pei, Z.X. Wen, Y.M. Zhang, and Z.F. Yue, Oxidation behavior and mechanism of a Ni-based single crystal superalloy with single α-Al2O3 film at 1000°C, Appl. Surf. Sci., 411(2017), p. 124. doi: 10.1016/j.apsusc.2017.03.116
|
[28] |
H. Zhang, Y. Liu, X. Chen, H.W. Zhang, and Y.X. Li, Microstructural homogenization and high-temperature cyclic oxidation behavior of a Ni-based superalloy with high-Cr content, J. Alloys Compd., 727(2017), p. 410. doi: 10.1016/j.jallcom.2017.08.137
|
[29] |
Y.F. Li, C. Li, L.M. Yu, Z.Q. Ma, H.J. Li, and Y.C. Liu, Characterization of γ′ precipitate and γ/γ′ interface in polycrystalline Ni3Al-based superalloys, Vacuum, 176(2020), art. No. 109310. doi: 10.1016/j.vacuum.2020.109310
|
[30] |
T.W. Huang, J. Lu, Y. Xu, D. Wang, J. Zhang, J.C. Zhang, J. Zhang, and L. Liu, Effects of rhenium and tantalum on microstructural stability of hot-corrosion resistant single crystal superalloys aged at 900°C, Acta Metall. Sin., 55(2019), No. 11, p. 1427.
|
[31] |
H.A. Al-Abadleh, and V.H. Grassian, FT-IR study of water adsorption on aluminum oxide surfaces, Langmuir, 19(2003), No. 2, p. 341. doi: 10.1021/la026208a
|
[32] |
K.P.R. Reddy, J.L. Smialek, and A.R. Cooper, 18O tracer studies of Al2O3 scale formation on NiCrAl alloys, Oxid. Met., 17(1982), No. 5/6, p. 429. doi: 10.1007/BF00742122
|
[33] |
B.A. Pint, J.R. Martin, and L.W. Hobbs, 18O/SIMS characterization of the growth mmechanism of doped and undoped a-Al2O3, Oxid. Met., 39(1993), No. 3/4, p. 167. doi: 10.1007/BF00665610
|
[34] |
W.J. Quadakkers, H. Holzbrecher, K.G. Briefs, and H. Beske, Differences in growth mechanisms of oxide scales formed on ODS and conventional wrought alloys, Oxid. Met., 32(1989), No. 1/2, p. 67. doi: 10.1007/BF00665269
|
[35] |
C. Li, P. Song, A. Khan, J. Feng, K.L. Chen, J.J. Zang, X.P. Xiong, J.G. Lü, and J.S. Lu, Influence of water vapour on the HfO2 distribution within the oxide layer on CoNiCrAlHf alloys, J. Alloys Compd., 739(2018), p. 690. doi: 10.1016/j.jallcom.2017.12.334
|
[36] |
B.A. Pint and K.A. Unocic, Ionic segregation on grain boundaries in thermally grown alumina scales, Mater. High Temp., 29(2012), No. 3, p. 257. doi: 10.3184/096034012X13343209167745
|
[37] |
X.Z. Cao, J. He, H. Chen, B.Y. Zhou, L. Liu, and H.B. Guo, The formation mechanisms of HfO2 located in different positions of oxide scales on Ni−Al alloys, Corros. Sci., 167(2020), art. No. 108481. doi: 10.1016/j.corsci.2020.108481
|
[38] |
B.A. Pint, A.J. Garratt-Reed, and L.W. Hobbs, Possible role of the oxygen potential gradient in enhancing diffusion of foreign ions on α-Al2O3 grain boundaries, J. Am. Ceram. Soc., 81(1998), No. 2, p. 305. doi: 10.1111/j.1151-2916.1998.tb02335.x
|
[39] |
J. He, Z. Zhang, H. Peng, S.K. Gong, and H.B. Guo, The role of Dy and Hf doping on oxidation behavior of two-phase (γ' + β) Ni−Al alloys, Corros. Sci., 98(2015), p. 699. doi: 10.1016/j.corsci.2015.06.016
|
[40] |
H. Hindam and D.P. Whittle, Peg formation by short-circuit diffusion in Al2O3 scales containing oxide dispersions, J. Electrochem. Soc., 129(1982), No. 5, p. 1147. doi: 10.1149/1.2124044
|
[41] |
A.E. Paz y Puente, and D.C. Dunand, Effect of Cr content on interdiffusion and Kirkendall pore formation during homogenization of pack-aluminized Ni and Ni−Cr wires, Intermetallics, 101(2018), p. 108. doi: 10.1016/j.intermet.2018.07.007
|
[42] |
X.Z. Qin, J.T. Guo, C. Yuan, C.L. Chen, J.S. Hou, and H.Q. Ye, Decomposition of primary MC carbide and its effects on the fracture behaviors of a cast Ni-base superalloy, Mater. Sci. Eng. A, 485(2008), No. 1-2, p. 74. doi: 10.1016/j.msea.2007.07.055
|