Guoxing Ren, Songwen Xiao, Caibin Liao,  and Zhihong Liu, Activity coefficient of NiO in SiO2-saturated MnO–SiO2 slag and Al2O3-saturated MnO–SiO2–Al2O3 slag at 1623 K, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 248-255. https://doi.org/10.1007/s12613-020-2205-y
Cite this article as:
Guoxing Ren, Songwen Xiao, Caibin Liao,  and Zhihong Liu, Activity coefficient of NiO in SiO2-saturated MnO–SiO2 slag and Al2O3-saturated MnO–SiO2–Al2O3 slag at 1623 K, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 248-255. https://doi.org/10.1007/s12613-020-2205-y
Research Article

Activity coefficient of NiO in SiO2-saturated MnO–SiO2 slag and Al2O3-saturated MnO–SiO2–Al2O3 slag at 1623 K

+ Author Affiliations
  • Corresponding authors:

    Songwen Xiao    E-mail: zhliu@csu.edu.cn

    Zhihong Liu    E-mail: zhliu@csu.edu.cn

  • Received: 18 May 2020Revised: 28 September 2020Accepted: 30 September 2020Available online: 1 October 2020
  • As a part of the fundamental study related to the reduction smelting of spent lithium-ion batteries and ocean polymetallic nodules based on MnO–SiO2 slags, this work investigated the activity coefficient of NiO in SiO2-saturated MnO–SiO2 slag and Al2O3-saturated MnO–SiO2–Al2O3 slag at 1623 K with controlled oxygen partial pressure levels of 10−7, 10−6, and 10−5 Pa. Results showed that the solubility of nickel oxide in the slags increased with increasing oxygen partial pressure. The nickel in the MnO–SiO2 slag and MnO–SiO2–Al2O3 slag existed as NiO under experimental conditions. The addition of Al2O3 in the MnO–SiO2 slag decreased the dissolution of nickel in the slag and increased the activity coefficient of NiO. Furthermore, the activity coefficient of NiO (γNiO), which is solid NiO, in the SiO2 saturated MnO–SiO2 slag and Al2O3 saturated MnO–SiO2–Al2O3 slag at 1623 K can be respectively calculated as γNiO = 8.58w(NiO) + 3.18 and γNiO = 11.06w(NiO) + 4.07, respectively, where w(NiO) is the NiO mass fraction in the slag.

  • loading
  • [1]
    C. Hanisch, J. Diekmann, A. Stieger, W. Haselrieder, and A. Kwade, Recycling of lithium-ion batteries, [in] Handbook of Clean Energy Systems, John Wiley & Sons, Ltd., Chichester, 2015, p. 1.
    [2]
    A. Home, LME Stock Surge Grounds High-Flying Nickel, But for How Long?, Jan Harve ed. Glacier Media Group, 2020 [2020-1-17]. https://www.mining.com/web/lme-stock-surge-grounds-high-flying-nickel-but-for-how-long/
    [3]
    NetworkNewsWire, Electric Vehicle Growth Creates East-Asian Battery Mineral Boom, NetworkNewsWire, New York, 2020 [2020-4-10]. https://www.prnewswire.com/news-releases/electric-vehicle-growth-creates-east-asian-battery-mineral-boom-301014990.html
    [4]
    M.Y. Chen, X.T. Ma, B. Chen, R. Arsenault, P. Karlson, N. Simon, and Y. Wang, Recycling end-of-life electric vehicle lithium-ion batteries, Joule, 3(2019), No. 11, p. 2622. doi: 10.1016/j.joule.2019.09.014
    [5]
    G.X. Ren, S.W. Xiao, M.Q. Xie, B. Pan, Y.Q. Fan, F.G. Wang, and X. Xia, Recovery of valuable metals from spent lithium-ion batteries by smelting reduction process based on MnO–SiO2–Al2O3 slag system, [in] Reddy R.G., Chaubal P., Pistorius P.C., Pal U. eds, Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016. Springer, Cham, 2016, p. 211.
    [6]
    P.K. Sen, Metals and materials from deep sea nodules: An outlook for the future, Int. Mater. Rev., 55(2010), No. 6, p. 364. doi: 10.1179/095066010X12777205875714
    [7]
    G. Senanayake, Acid leaching of metals from deep-sea manganese nodules – A critical review of fundamentals and applications, Miner. Eng., 24(2011), No. 13, p. 1379. doi: 10.1016/j.mineng.2011.06.003
    [8]
    N.S. Randhawa, J. Hait, and R.K. Jana, A brief overview on manganese nodules processing signifying the detail in the Indian context highlighting the international scenario, Hydrometallurgy, 165(2016), p. 166. doi: 10.1016/j.hydromet.2015.09.013
    [9]
    E.H. Jeong, C.W. Nam, K.H. Park, and J.H. Park, Sulfurization of Fe–Ni–Cu–Co alloy to matte phase by carbothermic reduction of calcium sulfate, Metall. Mater. Trans. B, 47(2016), No. 2, p. 1103. doi: 10.1007/s11663-016-0590-4
    [10]
    S. Agarwal, K.K. Sahu, R.K. Jana, and S.P. Mehrotra, Recovery of Cu, Ni, Co and Mn from sea nodules by direct reduction smelting, [in] Proceedings of the Eighth (2009) ISOPE Ocean Mining Symposium, Chennai, 2009, p. 131.
    [11]
    D. Friedmann, A.K. Pophanken, and B. Friedrich, Pyrometallurgical treatment of high manganese containing deep sea nodules, J. Sustainable Metall., 3(2017), No. 2, p. 219. doi: 10.1007/s40831-016-0070-8
    [12]
    K.D. Mehta, C. Das, and B.D. Pandey, Leaching of copper, nickel and cobalt from Indian Ocean manganese nodules by Aspergillus niger, Hydrometallurgy, 105(2010), No. 1-2, p. 89. doi: 10.1016/j.hydromet.2010.08.002
    [13]
    R. Barik, K. Sanjay, B.K. Mishra, and M. Mohapatra, Micellar mediated selective leaching of manganese nodule in high temperature sulfuric acid medium, Hydrometallurgy, 165(2016), p. 44. doi: 10.1016/j.hydromet.2015.12.005
    [14]
    S.C. Das, Extraction of metals from polymetallic ocean nodules, [in] Proceeding National Symposium on Chemical and Allied Materials from Ocean, Calcutta, 1989, p. 9.
    [15]
    S.W. Xiao, G.X. Ren, M.Q. Xie, B. Pan, Y.Q. Fan, F.G. Wang, and X. Xia, Recovery of valuable metals from spent lithium-ion batteries by smelting reduction process based on MnO–SiO2–Al2O3 slag system, J. Sustainable Metall., 3(2017), No. 4, p. 703. doi: 10.1007/s40831-017-0131-7
    [16]
    N.S. Randhawa, R.K. Jana, and N.N. Das, Silicomanganese production utilising low grade manganese nodules leaching residue, Miner. Process. Extr. Metall., 122(2013), No. 1, p. 6. doi: 10.1179/1743285512Y.0000000022
    [17]
    M. Sommerfeld, D. Friedmann, T. Kuhn, and B. Friedrich, “zero-waste”: A sustainable approach on pyrometallurgical processing of manganese nodule slags, Minerals, 8(2018), No. 12, art. No. 544. doi: 10.3390/min8120544
    [18]
    E.J. Grimsey, The effect of temperature on nickel solubility in silica saturated fayalite slags from 1523 to 1623 K, Metall. Trans. B, 19(1988), No. 2, p. 243. doi: 10.1007/BF02654208
    [19]
    R.G. Reddy and C.C. Acholonu, Distribution of nickel between copper–nickel and alumina saturated iron silicate slags, Metall. Trans. B, 15(1984), No. 1, p. 33. doi: 10.1007/BF02661060
    [20]
    H.M. Henao, M. Hino, and K. Itagaki, Phase equilibrium between Ni–S melt and FeOX–SiO2 or FeOX–CaO based slag under controlled partial pressures, Mater. Trans., 43(2002), No. 9, p. 2219. doi: 10.2320/matertrans.43.2219
    [21]
    Y. Takeda, S. Ishiwata, and A. Yazawa, Distribution equilibria of minor elements between liquid copper and calcium ferrite slag, Trans. Jpn. Inst. Met., 24(1983), No. 7, p. 518. doi: 10.2320/matertrans1960.24.518
    [22]
    R.U. Pagador, M. Hino, and K. Itagaki, Distribution of minor elements between MgO saturated FeOx–MgO–SiO2 or FeOx–CaO–MgO–SiO2 slag and nickel alloy, Mater. Trans., JIM, 40(1999), No. 3, p. 225. doi: 10.2320/matertrans1989.40.225
    [23]
    H. Henao, M. Hino, and K. Itagaki, Distribution of Ni, Cr, Mn, Co and Cu between Fe–Ni alloy and FeOx–MgO–SiO2 base slags, Mater. Trans., 42(2001), No. 9, p. 1959. doi: 10.2320/matertrans.42.1959
    [24]
    G.Q. Li and F. Tsukihashi, Distribution equilibria of Fe, Co and Ni between MgO-saturated FeOx–MgO–SiO2 slag and Ni alloy, ISIJ Int., 41(2001), No. 11, p. 1303. doi: 10.2355/isijinternational.41.1303
    [25]
    H. Henao, M. Hino, and K. Itagaki, Phase equilibrium between Ni–S melt and CaO–Al2O3 based slag in CO–CO2–SO2 gas mixtures at 1773 K, Mater. Trans., 43(2002), No. 11, p. 2873. doi: 10.2320/matertrans.43.2873
    [26]
    H.M. Henao and K. Itagaki, Phase equilibrium and distribution of minor elements between Ni–S melt and Al2O3–CaO–MgO slag at 1873 K, Metall. Mater. Trans. B, 35(2004), No. 6, p. 1041. doi: 10.1007/s11663-004-0060-2
    [27]
    X. Lu, T. Miki, and T. Nagasaka, Activity coefficients of NiO and CoO in CaO–Al2O3–SiO2 slag and their application to the recycling of Ni–Co–Fe-based end-of-life superalloys via remelting, Int. J. Miner. Metall. Mater., 24(2017), No. 1, p. 25. doi: 10.1007/s12613-017-1375-8
    [28]
    G. Roghani, E. Jak, and P. Hayes, Phase equilibrium studies in the “MnO”–Al2O3–SiO2 system, Metall. Mater. Trans. B, 33(2002), No. 6, p. 827. doi: 10.1007/s11663-002-0066-6
    [29]
    S.H. Lee, S.M. Moon, D.J. Min, and J.H. Park, Thermodynamic behavior of nickel in CaO–SiO2–FetO slag, Metall. Mater. Trans. B, 33(2002), No. 1, p. 55. doi: 10.1007/s11663-002-0085-3
    [30]
    J.G. Park, H.S. Eom, W.W. Huh, Y.S. Lee, D.J. Min, and I. Sohn, A study in the thermodynamic behavior of nickel in the MgO–SiO2–FeO slag system, Steel Res. Int., 82(2011), No. 4, p. 415. doi: 10.1002/srin.201000151
    [31]
    E.J. Grimsey and X.L. Liu, The activity coefficient of cobalt oxide in silica-saturated iron silicate slags, Metall. Mater. Trans. B, 26(1995), No. 2, p. 229. doi: 10.1007/BF02660963
    [32]
    B. Derin and O. Yücel, The distribution of cobalt between Co-Cu alloys and Al2O3–FeO–Fe2O3–SiO2 slags, Scand. J. Metall., 31(2002), No. 1, p. 12. doi: 10.1034/j.1600-0692.2002.310103.x
    [33]
    C.C. Acholonu, Distribution of Copper, Cobalt, Nickel, Between Alloys and Silica-Unsaturated Iron Slags [Dissertation], University of Nevada, Reno, 1983, p. 9.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(1940) PDF Downloads(78) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return