Cite this article as: |
Santi Phumying, Thongsuk Sichumsaeng, Pinit Kidkhunthod, Narong Chanlek, Jessada Khajonrit, Somchai Sonsupap, and Santi Maensiri, Influence of polymer solution on the morphology and local structure of NH4ZnPO4 powders synthesized by a simple precipitation method at room temperature, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 298-304. https://doi.org/10.1007/s12613-020-2208-8 |
Santi Maensiri E-mail: santimaensiri@g.sut.ac.th
NH4ZnPO4 powders were synthesized using a simple precipitation method at room temperature. The effects of polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), glucose, and hexadecyltrimethylammonium bromide (CTAB) solutions on the morphology and structure of the prepared samples were investigated. The phase composition and morphology of the prepared samples were characterized using X-ray diffraction and scanning electron microscopy, respectively. Depending on the polymer sources, the hexagonal structure prepared using non-surfactant of water completely changed to monoclinic structure when CTAB was added. X-ray absorption near-edge structure (XANES) and X-ray photoelectron spectroscopy (XPS) were performed to study the local structure and surface electronic structure of the prepared samples, confirming that the oxidation states of P and Zn ions are 5+ and 2+, respectively. On the basis of the results of inductively coupled plasma atomic emission spectroscopy (ICP-OES), the NH4ZnPO4 powders can be classified as a slow-release fertilizer where less than 15% of the ions were released in 24 h. A simple precipitation method using water, PVP, PVA, sucrose, and CTAB as a template can be used to synthesize NH4ZnPO4 powders. In addition, this method may be extended for the preparation of other oxide materials.
[1] |
X. Zhang, E.A. Davidson, D.L. Mauzerall, T.D. Searchinger, P. Dumas, and Y. Shen, Managing nitrogen for sustainable development, Nature, 528(2015), No. 7580, p. 51. doi: 10.1038/nature15743
|
[2] |
F. Zulfiqar, M. Navarro, M. Ashraf, N.A. Akram, and S. Munné-Bosch, Nanofertilizer use for sustainable agriculture: Advantages and limitations, Plant Sci., 289(2019), art. No. 110270. doi: 10.1016/j.plantsci.2019.110270
|
[3] |
H. Pang, Z.Z. Yan, W.Q. Wang, Y.Y. Wei, X.X. Li, J. Li, J. Chen, J.S. Zhang, and H.H. Zheng, Template-free controlled fabrication of NH4MnPO4·H2O and Mn2P2O7 micro-nanostructures and study of their electrochemical properties, Int. J. Electrochem. Sci., 7(2012), No. 12, p. 12340.
|
[4] |
X.G. Wang, S.Y. Lü, C.M. Gao, X.B. Xu, Y. Wei, X. Bai, C. Feng, N.N. Gao, M.Z. Liu, and L. Wu, Biomass-based multifunctional fertilizer system featuring controlled-release nutrient, water-retention and amelioration of soil, RSC Adv., 4(2014), No. 35, p. 18382. doi: 10.1039/c4ra00207e
|
[5] |
G.L. Bridger, M.L. Salutsky, and R.W. Starostka, Micronutrient sources, metal ammonium phosphates as fertilizers, J. Agric. Food Chem., 10(1962), No. 3, p. 181. doi: 10.1021/jf60121a006
|
[6] |
M. Kalbasi, G.J. Racz, and L.A. Lewen-Rudgers, Reaction products and solubility of applied zinc compounds in some Manitoba soils, Soil Sci., 125(1978), No. 1, p. 55. doi: 10.1097/00010694-197801000-00009
|
[7] |
L.M. Lapina, Metal ammonium phosphates and their new applications, Russ. Chem. Rev., 37(1968), No. 9, p. 693. doi: 10.1070/RC1968v037n09ABEH001693
|
[8] |
A.Q. Yuan, J. Wu, L.J. Bai, S.M. Ma, Z.Y. Huang, and Z.F. Tong, Standard molar enthalpies of formation for ammonium/3d-transition metal phosphates NH4MPO4·H2O (M = Mn2+, Co2+, Ni2+, Cu2+), J. Chem. Eng. Data, 53(2008), No. 5, p. 1066. doi: 10.1021/je700385x
|
[9] |
H. Pang, Z.Z. Yan, W.Q. Wang, J. Chen, J.S. Zhang, and H.H. Zheng, Facile fabrication of NH4CoPO4·H2O nano/microstructures and their primarily application as electrochemical supercapacitor, Nanoscale, 4(2012), No. 19, p. 5946. doi: 10.1039/c2nr31208e
|
[10] |
K. Byrappa, C.K. Chandrashekar, B. Basavalingu, K.M. LokanathaRai, S. Ananda, and M. Yoshimura, Growth, morphology and mechanism of rare earth vanadate crystals under mild hydrothermal conditions, J. Cryst. Growth, 306(2007), No. 1, p. 94. doi: 10.1016/j.jcrysgro.2007.03.055
|
[11] |
W.T.A. Harrison, A.N. Sobolev, and M.L.F. Phillips, Hexagonal ammonium zinc phosphate, (NH4)ZnPO4, at 10 K, Acta Crystallogr. Sect. C: Cryst. Struct. Commun., 57(2001), No. 5, p. 508. doi: 10.1107/S0108270101002992
|
[12] |
B. Yan and J.F. Gu, Morphology controlled solvo-thermal synthesis and luminescence of NH4ZnPO4: Eu3+ submicrometer phosphor, J. Alloys Compd., 479(2009), No. 1-2, p. 536. doi: 10.1016/j.jallcom.2008.12.126
|
[13] |
D. Yue, W. Lu, L. Jin, C.Y. Li, W. Luo, M.N. Wang, Z.L. Wang, and J.H. Hao, Controlled synthesis, asymmetrical transport behavior and luminescence properties of lanthanide doped ZnO mushroom-like 3D hierarchical structures, Nanoscale, 6(2014), No. 22, p. 13795. doi: 10.1039/C4NR04359F
|
[14] |
X.M. Sun, X. Chen, Z.X. Deng, and Y.D. Li, A CTAB-assisted hydrothermal orientation growth of ZnO nanorods, Mater. Chem. Phys., 78(2003), No. 1, p. 99. doi: 10.1016/S0254-0584(02)00310-3
|
[15] |
G.W. Rehm, R.A. Wiese, and G.W. Hergert, Response of corn to zinc source and rate of zinc band applied with either orthophosphate or polyphosphate, Soil Sci., 129(1980), No. 1, p. 36. doi: 10.1097/00010694-198001000-00007
|
[16] |
Y. Li, Q.Y. Liu, and W.J. Shen, Morphology-dependent nanocatalysis: Metal particles, Dalton Trans., 40(2011), No. 22, p. 5811. doi: 10.1039/c0dt01404d
|
[17] |
Z. Amghouz, B. Ramajo, S.A. Khainakov, I. da Silva, G.R. Castro, J.R. García, and S. García-Granda, Dimensionality changes in the solid phase at room temperature: 2D → 1D → 3D evolution induced by ammonia sorption–desorption on zinc phosphates, Chem. Commun., 50(2014), No. 51, p. 6729. doi: 10.1039/C4CC01314J
|
[18] |
N.T.K. Thanh, N. Maclean, and S. Mahiddine, Mechanisms of nucleation and growth of nanoparticles in solution, Chem. Rev., 114(2014), No. 15, p. 7610. doi: 10.1021/cr400544s
|
[19] |
Q. Chen, Y.Q. Wang, M.Y. Zheng, H. Fang, and X. Meng, Nanostructures confined self-assembled in biomimetic nanochannels for enhancing the sensitivity of biological molecules response, J. Mater. Sci.: Mater. Electron., 29(2018), No. 23, p. 19757. doi: 10.1007/s10854-018-0101-2
|
[20] |
D.D. Patel and B.D. Anderson, Maintenance of supersaturation II: Indomethacin crystal growth kinetics versus degree of supersaturation, J. Pharm. Sci., 102(2013), No. 5, p. 1544. doi: 10.1002/jps.23498
|
[21] |
T.T. Jiang, Y.Q. Wang, D.W. Meng, X.L. Wu, J.X. Wang, and J.Y. Chen, Controllable fabrication of CuO nanostructure by hydrothermal method and its properties, Appl. Surf. Sci., 311(2014), p. 602. doi: 10.1016/j.apsusc.2014.05.116
|
[22] |
Y.Q. Wang, T.T. Jiang, D.W. Meng, J. Yang, Y.C. Li, Q. Ma, and J. Han, Fabrication of nanostructured CuO films by electrodeposition and their photocatalytic properties, Appl. Surf. Sci., 317(2014), p. 414. doi: 10.1016/j.apsusc.2014.08.144
|
[23] |
M.Y. Zhu, Y. Wang, D.H. Meng, X.Z. Qin, and G.W. Diao, Hydrothermal synthesis of hematite nanoparticles and their electrochemical properties, J. Phys. Chem. C, 116(2012), No. 30, p. 16276. doi: 10.1021/jp304041m
|
[24] |
Z.F. Jiang, J.M. Xie, D.L. Jiang, X.J. Wei, and M. Chen, Modifiers-assisted formation of nickel nanoparticles and their catalytic application to p-nitrophenol reduction, CrystEngComm, 15(2013), No. 3, p. 560. doi: 10.1039/C2CE26398J
|
[25] |
A. Kyrychenko, D.A. Pasko, and O.N. Kalugin, Poly(vinyl alcohol) as a water protecting agent for silver nanoparticles: The role of polymer size and structure, Phys. Chem. Chem. Phys., 19(2017), No. 13, p. 8742. doi: 10.1039/C6CP05562A
|
[26] |
X.H. Sun, C.M. Zheng, F.X. Zhang, Y.L. Yang, G.J. Wu, A.M. Yu, and N.J. Guan, Size-controlled synthesis of magnetite (Fe3O4) nanoparticles coated with glucose and gluconic acid from a single Fe(III) precursor by a sucrose bifunctional hydrothermal method, J. Phys. Chem. C, 113(2009), No. 36, p. 16002. doi: 10.1021/jp9038682
|
[27] |
N. Treesukkasem, C. Chokradjaroen, S. Theeramunkong, N. Saito, and A. Watthanaphanit, Synthesis of Au nanoparticles in natural matrices by liquid-phase plasma: Effects on cytotoxic activity against normal and cancer cell lines, ACS Appl. Nano Mater., 2(2019), No. 12, p. 8051. doi: 10.1021/acsanm.9b02106
|
[28] |
Y.C. Pan, D. Heryadi, F. Zhou, L. Zhao, G. Lestari, H.B. Su, and Z.P. Lai, Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants, CrystEngComm, 13(2011), No. 23, p. 6937. doi: 10.1039/c1ce05780d
|
[29] |
T. Asgari-Vadeghani, D. Ghanbari, M.R. Mozdianfar, M. Salavati-Niasari, S. Bagheri, and K. Saberyan, Sugar and surfactant-assisted synthesis of Mg(OH)2 nano-flower and PVA nanocomposites, J. Clust. Sci., 27(2016), No. 1, p. 299. doi: 10.1007/s10876-015-0930-6
|
[30] |
M.E. Trenkel, Slow- and Controlled-release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture, International fertilizer industry Association, Paris, 2010, p. 14.
|
[31] |
P. Li, Z.P. Xu, M.A. Hampton, D.T. Vu, L.B. Huang, V. Rudolph, and A.V. Nguyen, Control preparation of zinc hydroxide nitrate nanocrystals and examination of the chemical and structural stability, J. Phys. Chem. C, 116(2012), No. 18, p. 10325. doi: 10.1021/jp300045u
|
[32] |
M. Yuvaraj and K.S. Subramanian, Controlled-release fertilizer of zinc encapsulated by a manganese hollow core shell, Soil Sci. Plant Nutr., 61(2015), No. 2, p. 319. doi: 10.1080/00380768.2014.979327
|
[33] |
M. Yuvaraj and K.S. Subramanian, Development of slow release Zn fertilizer using nano-zeolite as carrier, J. Plant Nutr., 41(2018), No. 3, p. 311. doi: 10.1080/01904167.2017.1381729
|