Sushma Miryalaand Masato Murakami, Special variation of infiltration-growth processed bulk YBCO fabricated using new liquid source: Ba3Cu5O8 (1:1.3) and YbBa2Cu3Oy, Int. J. Miner. Metall. Mater., 28(2021), No. 6, pp. 1048-1056. https://doi.org/10.1007/s12613-020-2213-y
Cite this article as:
Sushma Miryalaand Masato Murakami, Special variation of infiltration-growth processed bulk YBCO fabricated using new liquid source: Ba3Cu5O8 (1:1.3) and YbBa2Cu3Oy, Int. J. Miner. Metall. Mater., 28(2021), No. 6, pp. 1048-1056. https://doi.org/10.1007/s12613-020-2213-y
Research Article

Special variation of infiltration-growth processed bulk YBCO fabricated using new liquid source: Ba3Cu5O8 (1:1.3) and YbBa2Cu3Oy

+ Author Affiliations
  • Corresponding author:

    Sushma Miryala    E-mail: sushmafeb15@gmail.com

  • Received: 13 August 2020Revised: 15 October 2020Accepted: 19 October 2020Available online: 20 October 2020
  • Utilization of novel materials, particularly high-Tc (critical temperature) superconductors, is essential to pursue the United Nations’ Sustainable Goals, as well as to meet the increasing worldwide demand for clean and carbon-free electric power technologies. Superconducting magnets are beneficial in several real-life applications including transportation, energy production, magnetic resonance imaging (MRI), and drug delivery systems. To achieve high performance, one must develop uniform, large-grain, infiltration-growth (IG) processed bulk YBa2Cu3Oy (Y-123) super-magnets. In this study, we report the magnetic and microstructural properties of a large-grain, top-seeded, IG-processed Y-123 pellet, which is 20 mm in diameter and 6 mm in height; the pellet is produced utilizing liquid Yb-123+Ba3Cu5O8 as the liquid source. All the samples cut from the top of the bulk exhibit a sharp superconducting transition (approximately 1 K wide) with the onset Tc of approximately 90 K. However, in the samples cut from the bottom surface, the onset Tc values slightly decreased to between 88 and 90 K, although still exhibiting a sharp superconducting transition. The top and bottom samples exhibited the highest remnant value of Jc (critical current density) at 77 K H//c-axis of 50 and 55 kA/cm2, respectively. The remnant Jc and irreversibility field values significantly fluctuated, being fairly low in some bottom samples. Scanning electron microscopy identified nanometer size Y-211 (Y2BaCuO5) secondary-phase particles dispersed in the Y-123 matrix. Energy-dispersive spectroscopy clarified that the decreased both Tc and Jc for the bottom samples were attributed to liquid phase dispersion within the Y-123 phase.

  • loading
  • [1]
    T. Vaughan, L. DelaBarre, C. Snyder, J.F. Tian, C. Akgun, D. Shrivastava, W. Liu, C. Olson, G. Adriany, J. Strupp, P. Andersen, A. Gopinath, P.F. van de Moortele, M. Garwood, and K. Ugurbil, 9.4T human MRI: Preliminary results, Magn. Reson. Med., 56(2006), No. 6, p. 1274. doi: 10.1002/mrm.21073
    [2]
    J.G. Bednorz and K.A. Muller, Possible high Tc superconductivity in the Ba−La−Cu−O system, Z. Phys. B: Condens. Matter, 64(1986), No. 2, p. 189. doi: 10.1007/BF01303701
    [3]
    M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, and C.W. Chu, Superconductivity at 93 K in a new mixed-phase Y–Ba–Cu–O compound system at ambient pressure, Phys. Rev. Lett., 58(1987), No. 9, p. 908. doi: 10.1103/PhysRevLett.58.908
    [4]
    S. Kamel and S. Venkatakrishnan, Oriented Grained Y–Bb–Cu–O Superconductors Having High Critical Currents and Method for Producing Same, United States Patent, Appl. US4956336, 1990.
    [5]
    D.A. Cardwell, Processing and properties of large grain (RE)BCO, Mater. Sci. Eng. B, 53(1998), No. 1-2, p. 1. doi: 10.1016/S0921-5107(97)00293-6
    [6]
    M. Murakami, T. Takata, K. Yamaguchi, A. Kondoh, and N. Koshizuka, Oxide Superconductor and Process for Producing the Same, United States, Appl. US5395820, 1995.
    [7]
    H. Fujimoto, S. Gotoh, T. Izumi, N. Koshizuka, K. Miya, M. Murakami, N. Nakamura, Y. Nakamura, Y. Shiohara, H. Takaichi, T. Taguchi, M. Uesaka, H.W. Weber, and K. Yamaguchi, Melt Processed High-Temperature Superconductors, M. Murakami, Ed., World Scientific Publishing Co., Ltd., Singapore, 1993, p.21.
    [8]
    H.T. Ren, L. Xiao, Y.L. Jiao, and M.H. Zheng, Processing and characterization of YBCO superconductors by top-seeded melt-growth method in batch process, Physica C, 412-414(2004), p. 597. doi: 10.1016/j.physc.2003.12.064
    [9]
    M. Tomita and M. Murakami, High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K, Nature, 421(2003), No. 6922, p. 517. doi: 10.1038/nature01350
    [10]
    M. Muralidhar, N. Sakai, N. Chikumoto, M. Jirsa, T. Machi, M. Nishiyama, Y. Wu, and M. Murakami, New type of vortex pinning structure effective at very high magnetic fields, Phys. Rev. Lett., 89(2002), No. 23, art. No. 237001. doi: 10.1103/PhysRevLett.89.237001
    [11]
    S. Nariki, N. Sakai, M. Murakami, and I. Hirabayashi, Fabrication and superconducting properties of Gd–Ba–Cu–O single-grain bulk with Barium cerate addition, Physica C., 445-448(2006), p. 291. doi: 10.1016/j.physc.2006.04.069
    [12]
    M. Muralidhar, N. Sakai, M. Jirsa, M. Murakami, and N. Koshizuka, High-Tc superconducting magnets that function at liquid oxygen temperature, IEEE Trans. Appl. Supercond., 14(2004), No. 2, p. 1206. doi: 10.1109/TASC.2004.830530
    [13]
    E.R. Sudhakar and T. Rajasekharan, Fabrication of textured REBa2Cu3O7/RE2BaCuO5 (RE=Y, Gd) composites by infiltration and growth of RE2BaCuO5 preforms by liquid phases, Supercond. Sci. Technol., 11(1998), No. 5, p. 523. doi: 10.1088/0953-2048/11/5/014
    [14]
    A. Mahmood, B.H. Jun, Y.H. Han, and C.J. Kim, Effective pore control and critical current density in liquid infiltration growth processed Y-123 superconductors with Ag addition, Supercond. Sci. Technol., 23(2010), No. 6, art. No. 065005. doi: 10.1088/0953-2048/23/6/065005
    [15]
    D.K. Namburi, Y.H. Shi, K.G. Palmer, A.R. Dennis, J.H. Durrell, and D.A. Cardwell, An improved top seeded infiltration growth method for the fabrication of Y–Ba–Cu–O bulk superconductors, J. Eur. Ceram. Soc., 36(2016), No. 3, p. 615. doi: 10.1016/j.jeurceramsoc.2015.09.036
    [16]
    M. Sushma and M. Murakami, IG processed YBa2Cu3Oy produced by YbBa2Cu3Oy+liquid phase as a liquid source, [in] Applied Superconductivity Conference (ASC2018), Seattle, 2018.
    [17]
    M. Sushma and M. Murakami, Single grain bulk YBa2Cu3Oy superconductors grown by infiltration growth process utilizing the YbBa2Cu3Oy+liquid phase as a liquid source, J. Supercond. Novel Magn., 31(2018), No. 8, p. 2291. doi: 10.1007/s10948-018-4758-9
    [18]
    M. Sushma, Effect of liquid phase mass for the production of single grain infiltration growth processed bulk YBa2Cu3Oy by YbBa2Cu3Oy+liquid phase as a liquid source, Mater. Chem. Phys., 242(2020), art. No. 122477. doi: 10.1016/j.matchemphys.2019.122477
    [19]
    D.X. Chen and R.B. Goldfarb, Kim model for magnetization of type-II superconductors, J. Appl. Phys., 66(1989), No. 6, p. 2489. doi: 10.1063/1.344261
    [20]
    W. Zhai, Y.H. Shi, J.H. Durrell, A.R. Dennis, N.A. Rutter, S.C. Troughton, S.C. Speller, and D.A. Cardwell, The processing and properties of single grain Y–Ba–Cu–O fabricated from graded precursor powders, Supercond. Sci. Technol., 26(2013), No. 12, art. No. 125021. doi: 10.1088/0953-2048/26/12/125021
    [21]
    M. Eisterer, S. Haindl, M. Zehetmayer, R. Gonzalez-Arrabal, H.W. Weber, D. Litzkendorf, M. Zeisberger, T. Habisreuther, W. Gawalek, L. Shlyk, and G. Krabbes, Limitations for the trapped field in large grain YBCO superconductors, Supercond. Sci. Technol., 19(2006), No. 7, p. S530. doi: 10.1088/0953-2048/19/7/S21
    [22]
    N.H. Babu, K. Iida, Y. Shi, and D.A. Cardwell, Processing of high performance (LRE)-Ba–Cu–O large, single-grain bulk superconductors in air, Physica C, 445-448(2006), p. 286. doi: 10.1016/j.physc.2006.04.067
    [23]
    D. Dhruba, M. Muralidhar, M.S. Ramachandra Rao, and M. Murakami, Top seeded infiltration growth of (Y,Gd)Ba2Cu3Oy bulk superconductors with high critical current densities, Supercond. Sci. Technol., 30(2017), No. 10, p. 105015. doi: 10.1088/1361-6668/aa83da
    [24]
    M. Muralidhar, M.R. Koblischka, P. Diko, and M. Murakami, Enhancement of Jc by 211 particles in ternary Nd0.33Eu0.33Gd0.33)Ba2Cu3Oy melt-processed superconductors, Appl. Phys. Lett., 76(2000), No. 1, p. 91. doi: 10.1063/1.125666
    [25]
    D.K. Namburi, Y.H. Shi, K.G. Palmer, A.R. Dennis, J.H. Durrell, and D.A. Cardwell, Control of Y-211 content in bulk YBCO superconductors fabricated by a buffer-aided, top seeded infiltration and growth melt process, Supercond. Sci. Technol., 29(2016), No. 3, art. No. 034007. doi: 10.1088/0953-2048/29/3/034007
    [26]
    J.V.J. Congreve, Y.H. Shi, R.D.Anthony, H.D. John, J.H. Durrell, and D.A Cardwel, Improvements in the processing of large grain, bulk Y–Ba–Cu–O superconductors via the use of additional liquid phase, Supercond. Sci. Technol., 30(2017), No. 1, art. No. 015017. doi: 10.1088/0953-2048/30/1/015017
    [27]
    M. Sushma and M. Murakami, Single-grain bulk YBa2Cu3Oy superconductor grown in shorter duration by IG process, J. Supercond. Novel Magn., 32(2019), No. 8, p. 2369. doi: 10.1007/s10948-018-4990-3
    [28]
    B. Rosenstein and A. Knigavko, Anisotropic peak effect due to structural phase transition in the vortex lattice, Phys. Rev. Lett., 83(1999), No. 4, p. 844. doi: 10.1103/PhysRevLett.83.844
    [29]
    S.Y. Chen, Y.S. Hsiao, C.L. Chen, D.C. Yan, I.G. Chen, and M.K. Wu, Remarkable peak effect in Jc(H,T) of Y–Ba–Cu–O bulk by using infiltration growth (IG) method, Mater. Sci. Eng. B, 151(2008), No. 1, p. 31. doi: 10.1016/j.mseb.2008.03.008
    [30]
    D.M. Gokhfeld, S.V. Semenov, D.A. Balaev, I.S. Yakimov, A.A. Dubrovskiy, K.Y. Terentyev, A.L. Freydman, A.A. Krasikov, and M.I. Petrov, Establishing of peak effect in YBCO by Nd substitution, J. Magn. Magn. Mater., 440(2017), p. 127. doi: 10.1016/j.jmmm.2016.12.089
    [31]
    M. Daeumling, J.M. Seuntjens, and D.C. Larbalestier, Oxygen-defect flux pinning, anomalous magnetization and intra-grain granularity in YBa2Cu3O7−δ, Nature, 346(1990), No. 6282, p. 332. doi: 10.1038/346332a0
    [32]
    M. Hussain, S. Kuroda, and K. Takita, Peak effect observed in Zn doped YBCO single crystals, Physica C, 297(1998), No. 3-4, p. 176. doi: 10.1016/S0921-4534(97)01876-5
    [33]
    D. Yoshimi, M. Migita, E.S. Otabe, and T. Matsushita, Flux pinning and peak effect in Y-123 superconductor, Physica C, 357-360(2001), p. 590. doi: 10.1016/S0921-4534(01)00318-5
    [34]
    G. Osabe, S.I. Yoo, N. Sakai, T. Higuchi, T. Takizawa, K. Yasohama, and M. Murakami, Confirmation of Ba-rich Nd1+xBa2−xCu3O7−δ solid solutions, Supercond. Sci. Technol., 13(2000), No. 6, p. 637. doi: 10.1088/0953-2048/13/6/302
    [35]
    M. Muralidhar and M. Murakami, Effect of matrix composition on the flux pinning in a (Nd,Eu,Gd)Ba2Cu3Oy superconductor, Phys. Rev. B, 62(2000), No. 21, p. 13911. doi: 10.1103/PhysRevB.62.13911
    [36]
    T. Egi, J.G. Wen, K. Kuroda, H. Unoki, and N. Koshizuka, High critical-current density of Nd (Ba,Nd)2Cu3O7−δ single crystals, Appl. Phys. Lett., 67(1995), No. 16, p. 2406. doi: 10.1063/1.114562
    [37]
    S.P.K. Naik, M. Muralidhar, M. Jirsa, and M. Murakami, Growth and physical properties of top-seeded IG processed large grain (Gd,Dy)BCO bulk superconductor, J. Appl. Phys., 122(2017), No. 19, art. No. 193902. doi: 10.1063/1.4999164
    [38]
    S. Pinmangkorn, M. Miryala, S.S. Arvapalli, and M. Murakami, Enhancing the superconducting performance of melt grown bulk YBa2Cu3Oy via ultrasonically refined Y2BaCuO5 without PtO2 and CeO2, Mater. Chem. Phys., 244(2020), art. No. 122721. doi: 10.1016/j.matchemphys.2020.122721
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Share Article

    Article Metrics

    Article Views(2251) PDF Downloads(63) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return