Jiaojiao Yi, Fuyang Cao, Mingqin Xu, Lin Yang, Lu Wang,  and Long Zeng, Phase, microstructure and compressive properties of refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1231-1236. https://doi.org/10.1007/s12613-020-2214-x
Cite this article as:
Jiaojiao Yi, Fuyang Cao, Mingqin Xu, Lin Yang, Lu Wang,  and Long Zeng, Phase, microstructure and compressive properties of refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1231-1236. https://doi.org/10.1007/s12613-020-2214-x
Research Article

Phase, microstructure and compressive properties of refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi

+ Author Affiliations
  • Corresponding author:

    Lin Yang    E-mail: yanglin@jsut.edu.cn

  • Received: 1 July 2020Revised: 15 September 2020Accepted: 19 October 2020Available online: 20 October 2020
  • New refractory high-entropy alloys, CrHfNbTaTi and CrHfMoTaTi, derived from the well-known HfNbTaTiZr alloy through principal element substitution were prepared using vacuum arc melting. The phase components, microstructures, and compressive properties of the alloys in the as-cast state were investigated. Results showed that both alloys were composed of BCC and cubic Laves phases. In terms of mechanical properties, the yield strength increased remarkably from 926 MPa for HfNbTaTiZr to 1258 MPa for CrHfNbTaTi, whereas a promising plastic strain of around 15.0% was retained in CrHfNbTaTi. The morphology and composition of the network-shaped interdendritic regions were closely related to the improved mechanical properties due to elemental substitution. Dendrites were surrounded by an incompact interdendritic shell after Mo incorporation, which deteriorated yield strength and accelerated brittleness.
  • loading
  • [1]
    C.M. Lin, C.C. Juan, C.H. Chang, C.W. Tsai, and J.W. Yeh, Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys, J. Alloys Compd., 624(2015), p. 100. doi: 10.1016/j.jallcom.2014.11.064
    [2]
    T.M. Pollock and S. Tin, Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties, J. Propul. Power., 22(2006), No. 2, p. 361. doi: 10.2514/1.18239
    [3]
    E. Karaköse and M. Keskin, Microstructure evolution and mechanical properties of intermetallic Ni–xSi (x = 5, 10, 15, 20) alloys, J. Alloys Compd., 528(2012), p. 63. doi: 10.1016/j.jallcom.2012.02.165
    [4]
    N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, Y.Q. Su, J.J. Guo, and H.Z. Fu, Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy, Mater. Des., 81(2015), p. 87. doi: 10.1016/j.matdes.2015.05.019
    [5]
    D.B. Miracle, High entropy alloys as a bold step forward in alloy development, Nat. Commun., 10(2019), No. 1, p. 1805. doi: 10.1038/s41467-019-09700-1
    [6]
    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. doi: 10.1002/adem.200300567
    [7]
    B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375-377(2004), p. 213. doi: 10.1016/j.msea.2003.10.257
    [8]
    O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Refractory high-entropy alloys, Intermetallics, 18(2010), No. 9, p. 1758. doi: 10.1016/j.intermet.2010.05.014
    [9]
    O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 19(2011), No. 5, p. 698. doi: 10.1016/j.intermet.2011.01.004
    [10]
    O.N. Senkov, A.L. Pilchak, and S.L. Semiatin, Effect of cold deformation and annealing on the microstructure and tensile properties of a HfNbTaTiZr refractory high entropy alloy, Metall. Mater. Trans. A., 49(2018), No. 7, p. 2876. doi: 10.1007/s11661-018-4646-8
    [11]
    R.R. Eleti, T. Bhattacharjee, A. Shibata, and N. Tsuji, Unique deformation behavior and microstructure evolution in high temperature processing of HfNbTaTiZr refractory high entropy alloy, Acta. Mater., 171(2019), p. 132. doi: 10.1016/j.actamat.2019.04.018
    [12]
    U. Bhandari, C.Y. Zhang, S.M. Guo, and S.Z. Yang, First-principles study on the mechanical and thermodynamic properties of MoNbTaTiW, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1398. doi: 10.1007/s12613-020-2077-1
    [13]
    Q.W. Xing, J. Ma, and Y. Zhang, Phase thermal stability and mechanical properties analyses of (Cr,Fe,V)–(Ta,W) multiplebased elemental system using a compositional gradient film, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1379. doi: 10.1007/s12613-020-2063-7
    [14]
    T.D. Huang, S.Y. Wu, H. Jiang, Y.P. Lu, T.M. Wang, and T.J. Li, Effect of Ti content on microstructure and properties of TixZrVNb refractory high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1318. doi: 10.1007/s12613-020-2040-1
    [15]
    S.Y. Chen, K.K. Tseng, Y. Tong, W.D. Li, C.W. Tsai, J.W. Yeh, and P.K. Liaw, Grain growth and Hall-Petch relationship in a refractory HfNbTaZrTi high-entropy alloy, J. Alloys Compd., 795(2019), p. 19. doi: 10.1016/j.jallcom.2019.04.291
    [16]
    O.N. Senkov, S.V. Senkova, and C. Woodward, Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys, Acta. Mater., 68(2014), p. 214. doi: 10.1016/j.actamat.2014.01.029
    [17]
    É. Fazakas, V. Zadorozhnyy, L.K. Varga, A. Inoue, D.V. Louzguine-Luzgin, F.Y. Tian, and L. Vitos, Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X = V or Cr) refractory high-entropy alloys, Int. J. Refract. Met. Hard Mater., 47(2014), p. 131. doi: 10.1016/j.ijrmhm.2014.07.009
    [18]
    D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater., 122(2017), p. 448. doi: 10.1016/j.actamat.2016.08.081
    [19]
    O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloys Compd., 509(2011), No. 20, p. 6043. doi: 10.1016/j.jallcom.2011.02.171
    [20]
    A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater., 48(2000), No. 1, p. 279. doi: 10.1016/S1359-6454(99)00300-6
    [21]
    O.N. Senkov and C.F. Woodward, Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy, Mater. Sci. Eng. A, 529(2011), p. 311. doi: 10.1016/j.msea.2011.09.033
    [22]
    J. Chiang, B. Lawrence, J.D. Boyd, and A.K. Pilkey, Effect of microstructure on retained austenite stability and work hardening of trip steels, Mater. Sci. Eng. A, 528(2011), No. 13-14, p. 4516. doi: 10.1016/j.msea.2011.02.032
    [23]
    S. Liu, Z. Xiong, H. Guo, C. Shang, and R.D.K. Misra, The significance of multi-step partitioning: Processing-structure-property relationship in governing high strength-high ductility combination in medium-manganese steels, Acta Mater., 124(2017), p. 159. doi: 10.1016/j.actamat.2016.10.067
    [24]
    O.N. Senkov, S.V. Senkova, D.B. Miracle, and C. Woodward, Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system, Mater. Sci. Eng. A, 565(2013), p. 51. doi: 10.1016/j.msea.2012.12.018
    [25]
    C.C. Juan, M.H. Tsai, C.W. Tsai, C.M. Lin, W.R. Wang, C.C. Yang, S.K. Chen, S.J. Lin, and J.W. Yeh, Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys, Intermetallics, 62(2015), p. 76. doi: 10.1016/j.intermet.2015.03.013
    [26]
    S. Chen, X. Yang, K. Dahmen, P. Liaw, and Y. Zhang, Microstructures and crackling noise of AlxNbTiMoV high entropy alloys, Entropy, 16(2014), No. 2, p. 870. doi: 10.3390/e16020870
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(4118) PDF Downloads(77) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return