Cite this article as: |
Junjie Zhang, Xiaoyan Zhang, Bo Liu, Christian Ekberg, Shizhen Zhao, and Shengen Zhang, Phase evolution and properties of glass ceramic foams prepared by bottom ash, fly ash and pickling sludge, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 563-573. https://doi.org/10.1007/s12613-020-2219-5 |
Xiaoyan Zhang E-mail: xiaoyanzhang666@163.com
Bo Liu E-mail: liubo@ustb.edu.cn
Shengen Zhang E-mail: zhangshengen@mater.ustb.edu.cn
Municipal solid waste incineration products of bottom ash (BA), fly ash (FA), and pickling sludge (PS), causing severe environmental pollution, were transformed into glass ceramic foams with the aid of CaCO3 as a pore-foaming agent during sintering. The effect of the BA/FA mass ratio on the phase composition, pore morphology, pore size distribution, physical properties, and glass structure was investigated, with results showing that with the increase in the BA/FA ratio, the content of the glass phase, Si–O–Si, and Q3Si units decrease gradually. The glass transmission temperature of the mixture was also reduced. When combined, the glass viscosity decreases, causing bubble coalescence and uneven pore distribution. Glass ceramic foams with uniform spherical pores are fabricated. When the content of BA, FA, and PS are 35wt%, 45wt%, and 20wt%, respectively, contributing to high performance glass ceramic foams with a bulk density of 1.76 g/cm3, porosity of 56.01%, and compressive strength exceeding 16.23 MPa. This versatile and low-cost approach provides new insight into synergistically recycling solid wastes.
[1] |
H. Wang, Z.W. Chen, R. Ji, L.L. Liu, and X.D. Wang, Integrated utilization of high alumina fly ash for synthesis of foam glass ceramic, Ceram. Int., 44(2018), No. 12, p. 13681. doi: 10.1016/j.ceramint.2018.04.207
|
[2] |
S. Das, S.H. Lee, P. Kumar, K.H. Kim, S.S. Lee, and S.S. Bhattacharya, Solid waste management: Scope and the challenge of sustainability, J. Clean. Prod., 228(2019), p. 658. doi: 10.1016/j.jclepro.2019.04.323
|
[3] |
C. Mugoni, M. Montorsi, C. Siligardi, F. Andreola, I. Lancellotti, E. Bernardo, and L. Barbieri, Design of glass foams with low environmental impact, Ceram. Int., 41(2015), No. 3, p. 3400. doi: 10.1016/j.ceramint.2014.10.127
|
[4] |
M.G. Zhu, R. Ji, Z.M. Li, H. Wang, L.L. Liu, and Z.T. Zhang, Preparation of glass ceramic foams for thermal insulation applications from coal fly ash and waste glass, Constr. Build. Mater., 112(2016), p. 398. doi: 10.1016/j.conbuildmat.2016.02.183
|
[5] |
R. Ji, Z.T. Zhang, Y. He, L.L. Liu, and X.D. Wang, Synthesis, characterization and modeling of new building insulation material using ceramic polishing waste residue, Constr. Build. Mater., 85(2015), p. 119. doi: 10.1016/j.conbuildmat.2015.03.089
|
[6] |
E. Bernardo, R. Cedro, M. Florean, and S. Hreglich, Reutilization and stabilization of wastes by the production of glass foams, Ceram. Int., 33(2007), No. 6, p. 963. doi: 10.1016/j.ceramint.2006.02.010
|
[7] |
M.T. Souza, B.G.O. Maia, L.B. Teixeira, K.G. de Oliveira, A.H.B. Teixeira, and A.P. Novaes de Oliveira, Glass foams produced from glass bottles and eggshell wastes, Process. Saf. Environ. Prot., 111(2017), p. 60. doi: 10.1016/j.psep.2017.06.011
|
[8] |
E. Sharifikolouei, F. Baino, C. Galletti, D. Fino, and M. Ferraris, Adsorption of Pb and Cd in rice husk and their immobilization in porous glass-ceramic structures, Int. J. Appl. Ceram. Technol., 17(2020), No. 1, p. 105. doi: 10.1111/ijac.13356
|
[9] |
C.P. Xi, F. Zheng, J.H. Xu, W.G. Yang, Y.Q. Peng, Y. Li, P. Li, Q. Zhen, S. Bashir, and J.L. Liu, Preparation of glass-ceramic foams using extracted titanium tailing and glass waste as raw materials, Constr. Build. Mater., 190(2018), p. 896. doi: 10.1016/j.conbuildmat.2018.09.170
|
[10] |
T.Y. Liu, C.W. Lin, J.L. Liu, L. Han, H. Gui, C. Li, X. Zhou, H. Tang, Q.F. Yang, and A.X. Lu, Phase evolution, pore morphology and microstructure of glass ceramic foams derived from tailings wastes, Ceram. Int., 44(2018), No. 12, p. 14393. doi: 10.1016/j.ceramint.2018.05.049
|
[11] |
F. Baino and M. Ferraris, Production and characterization of ceramic foams derived from vitrified bottom ashes, Mater. Lett., 236(2019), p. 281. doi: 10.1016/j.matlet.2018.10.122
|
[12] |
P. Stabile, M. Bello, M. Petrelli, E. Paris, and M.R. Carroll, Vitrification treatment of municipal solid waste bottom ash, Waste Manage., 95(2019), p. 250. doi: 10.1016/j.wasman.2019.06.021
|
[13] |
A. Vaitkus, J. Gražulytė, O. Šernas, V. Vorobjovas, and R. Kleizienė, An algorithm for the use of MSWI bottom ash as a building material in road pavement structural layers, Constr. Build. Mater., 212(2019), p. 456. doi: 10.1016/j.conbuildmat.2019.04.014
|
[14] |
G. Flesoura, B. Garcia-Banos, J.M. Catala-Civera, J. Vleugels, and Y. Pontikes, In-situ measurements of high-temperature dielectric properties of municipal solid waste incinerator bottom ash, Ceram. Int., 45(2019), No. 15, p. 18751. doi: 10.1016/j.ceramint.2019.06.101
|
[15] |
Y.W. Xing, F.Y. Guo, M.D. Xu, X.H. Gui, H.S. Li, G.S. Li, Y.C. Xia, and H.S. Han, Separation of unburned carbon from coal fly ash: A review, Powder Technol., 353(2019), p. 372. doi: 10.1016/j.powtec.2019.05.037
|
[16] |
J. Yang, S.G. Zhang, D.A. Pan, B. Liu, C.L. Wu, and A.A. Volinsky, Treatment method of hazardous pickling sludge by reusing as glass–ceramics nucleation agent, Rare Met., 35(2016), No. 3, p. 269. doi: 10.1007/s12598-015-0673-4
|
[17] |
M.S. Cilla, M.D. de Mello Innocentini, M.R. Morelli, and P. Colombo, Geopolymer foams obtained by the saponification/peroxide/gelcasting combined route using different soap foam precursors, J. Am. Ceram. Soc., 100(2017), No. 8, p. 3440. doi: 10.1111/jace.14902
|
[18] |
X.Y. Zhang, N. Li, T. Lan, Y.J. Lu, K. Gan, J.M. Wu, W.L. Huo, J. Xu, and J.L. Yang, In-situ reaction synthesis of porous Si2N2O–Si3N4 multiphase ceramics with low dielectric constant via silica poly-hollow microspheres, Ceram. Int., 43(2017), No. 5, p. 4235. doi: 10.1016/j.ceramint.2016.12.058
|
[19] |
T.Y. Liu, J.S. Zhang, J.Q. Wu, J.L. Liu, C. Li, T.X. Ning, Z.W. Luo, X. Zhou, Q.F. Yang, and A.X. Lu, The utilization of electrical insulators waste and red mud for fabrication of partially vitrified ceramic materials with high porosity and high strength, J. Clean. Prod., 223(2019), p. 790. doi: 10.1016/j.jclepro.2019.03.162
|
[20] |
M.H.M. Zaid, K.A. Matori, H.J. Quah, W.F. Lim, H.A.A. Sidek, M.K. Halimah, W.M.M. Yunus, and Z.A. Wahab, Investigation on structural and optical properties of SLS–ZnO glasses prepared using a conventional melt quenching technique, J. Mater. Sci. Mater. Electron., 26(2015), No. 6, p. 3722. doi: 10.1007/s10854-015-2891-9
|
[21] |
R.D. Jia, L.B. Deng, F. Yun, H. Li, X.F. Zhang, and X.L. Jia, Effects of SiO2/CaO ratio on viscosity, structure, and mechanical properties of blast furnace slag glass ceramics, Mater. Chem. Phys., 233(2019), p. 155. doi: 10.1016/j.matchemphys.2019.05.065
|
[22] |
H. Elsayed, A.R. Romero, M. Picicco, J. Kraxner, D. Galusek, P. Colombo, and E. Bernardo, Glass-ceramic foams and reticulated scaffolds by sinter-crystallization of a hardystonite glass, J. Non Cryst. Solids, 528(2020), art. No. 119744.
|
[23] |
S.F. Zhang, X. Zhang, W. Liu, X. Lv, C.G. Bai, and L. Wang, Relationship between structure and viscosity of CaO–SiO2–Al2O3–MgO–TiO2 slag, J. Non Cryst. Solids, 402(2014), p. 214. doi: 10.1016/j.jnoncrysol.2014.06.006
|
[24] |
L. Han, J. Song, C.W. Lin, J.L. Liu, T.Y. Liu, Q. Zhang, Z.W. Luo, and A.X. Lu, Crystallization, structure and properties of MgO–Al2O3–SiO2 highly crystalline transparent glass-ceramics nucleated by multiple nucleating agents, J. Eur. Ceram. Soc., 38(2018), No. 13, p. 4533. doi: 10.1016/j.jeurceramsoc.2018.05.025
|
[25] |
E.M.A. Khalil, F.H. ElBatal, Y.M. Hamdy, H.M. Zidan, M.S. Aziz, and A.M. Abdelghany, Infrared absorption spectra of transition metals-doped soda lime silica glasses, Physica B,, 405(2010), No. 5, p. 1294.
|
[26] |
Y.M. Lai, Y.M. Zeng, X.L. Tang, H.W. Zhang, J. Han, and H. Su, Structural investigation of calcium borosilicate glasses with varying Si/Ca ratios by infrared and Raman spectroscopy, RSC Adv., 6(2016), No. 96, p. 93722. doi: 10.1039/C6RA20969F
|
[27] |
H. Gui, C. Li, C.W. Lin, Q. Zhang, Z.W. Luo, L. Han, J.L. Liu, T.Y. Liu, and A.X. Lu, Glass forming, crystallization, and physical properties of MgO–Al2O3–SiO2–B2O3 glass-ceramics modified by ZnO replacing MgO, J. Eur. Ceram. Soc., 39(2019), No. 4, p. 1397. doi: 10.1016/j.jeurceramsoc.2018.10.002
|
[28] |
L. Han, J. Song, Q. Zhang, Z.W. Luo, and A.X. Lu, Crystallization, structure and characterization of MgO–Al2O3–SiO2–P2O5 transparent glass-ceramics with high crystallinity, J. Non Cryst. Solids, 481(2018), p. 123. doi: 10.1016/j.jnoncrysol.2017.10.028
|
[29] |
H. Yamada, S. Sukenaga, K. Ohara, C. Anand, M. Ando, H. Shibata, T. Okubo, and T. Wakihara, Comparative study of aluminosilicate glass and zeolite precursors in terms of Na environment and network structure, Microporous Mesoporous Mater., 271(2018), p. 33. doi: 10.1016/j.micromeso.2018.05.006
|
[30] |
D. Manara, A. Grandjean, and D.R. Neuville, Advances in understanding the structure of borosilicate glasses: A Raman spectroscopy study, Am. Mineral., 94(2009), No. 5-6, p. 777. doi: 10.2138/am.2009.3027
|
[31] |
S. Zhang, Y.L. Zhang, J.T. Gao, Z.M. Qu, and Z. Zhang, Effects of Cr2O3 and CaF2 on the structure, crystal growth behavior, and properties of augite-based glass ceramics, J. Eur. Ceram. Soc., 39(2019), No. 14, p. 4283. doi: 10.1016/j.jeurceramsoc.2019.05.060
|