Cite this article as: |
Wen-rui Wang, Wu Qi, Xiao-li Zhang, Xiao Yang, Lu Xie, Dong-yue Li, and Yong-hua Xiang, Superior corrosion resistance-dependent laser energy density in (CoCrFeNi)95Nb5 high entropy alloy coating fabricated by laser cladding, Int. J. Miner. Metall. Mater., 28(2021), No. 5, pp. 888-897. https://doi.org/10.1007/s12613-020-2238-2 |
Wu Qi E-mail: miracle_iu@163.com
Xiao Yang E-mail: yangxiao@mail.ipc.ac.cn
(CoCrFeNi)95Nb5 high entropy alloy (HEA) coatings were successfully fabricated on a substrate of Q235 steel by laser cladding technology. These (CoCrFeNi)95Nb5 HEA coatings possess excellent properties, particularly corrosion resistance, which is clearly superior to that of some typical bulk HEA and common engineering alloys. In order to obtain appropriate laser cladding preparation process parameters, the effects of laser energy density on the microstructure, microhardness, and corrosion resistance of (CoCrFeNi)95Nb5 HEA coating were closely studied. Results showed that as the laser energy density increases, precipitation of the Laves phase in (CoCrFeNi)95Nb5 HEA coating gradually decreases, and diffusion of the Fe element in the substrate intensifies, affecting the integrity of the (CoCrFeNi)95Nb5 HEA. This decreases the microhardness of (CoCrFeNi)95Nb5 HEA coatings. Moreover, the relative content of Cr2O3, Cr(OH)3, and Nb2O5 in the surface passive film of the coating decreases with increasing energy density, causing corrosion resistance to decrease. This study demonstrates the controllability of a high-performance HEA coating using laser cladding technology, which has significance for the laser cladding preparation of other CoCrFeNi-system HEA coatings.
[1] |
H. Liang, J.W. Miao, B.Y. Gao, D.W. Deng, T.M. Wang, Y.P. Lu, Z.Q. Cao, H. Jiang, T.J. Li, and H.J. Kang, Microstructure and tribological properties of AlCrFe2Ni2W0.2Mo0.75 high-entropy alloy coating prepared by laser cladding in seawater, NaCl solution and deionized water, Surf. Coat. Technol., 400(2020), art. No. 126214. doi: 10.1016/j.surfcoat.2020.126214
|
[2] |
H.X. Chen and D.J. Kong, Effects of laser remelting speeds on microstructure, immersion corrosion, and electrochemical corrosion of arc–sprayed amorphous Al–Ti–Ni coatings, J. Alloys Compd., 771(2019), p. 584. doi: 10.1016/j.jallcom.2018.08.252
|
[3] |
X.W. Qiu and C.G. Liu, Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding, J. Alloys Compd., 553(2013), p. 216. doi: 10.1016/j.jallcom.2012.11.100
|
[4] |
X.R. Li, X.T. Wang, L.Y. Wang, Y.Y. Sun, B.B. Zhang, H.L. Li, Y.L. Huang, and B.R. Hou, Corrosion behavior of Q235 steel in atmospheres containing SO2 and NaCl, J. Mater. Eng. Perform., 28(2019), No. 4, p. 2327. doi: 10.1007/s11665-019-03984-6
|
[5] |
J.Y. Wang, B.S. Zhang, Y.Q. Yu, Z.J. Zhang, S.S. Zhu, X. Lou, and Z.Z. Wang, Study of high temperature friction and wear performance of (CoCrFeMnNi)85Ti15 high-entropy alloy coating prepared by plasma cladding, Surf. Coat. Technol., 384(2020), art. No. 125337. doi: 10.1016/j.surfcoat.2020.125337
|
[6] |
N.J. Ndiithi, M. Kang, J.P. Zhu, J.R. Lin, S.M. Nyambura, Y.T. Liu, and F. Huang, Microstructural and corrosion behavior of high velocity arc sprayed FeCrAl/Al composite coating on Q235 steel substrate, Coatings, 9(2019), No. 9, p. 542. doi: 10.3390/coatings9090542
|
[7] |
Q.F. Ye, K. Feng, Z.G. Li, F.G. Lu, R.F. Li, J. Huang, and Y.X. Wu, Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating, Appl. Surf. Sci., 396(2017), p. 1420. doi: 10.1016/j.apsusc.2016.11.176
|
[8] |
J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, and Z.P. Lu, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system, Acta Mater., 62(2014), p. 105. doi: 10.1016/j.actamat.2013.09.037
|
[9] |
F. Otto, Y. Yang, H. Bei, and E.P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys, Acta Mater., 61(2013), No. 7, p. 2628. doi: 10.1016/j.actamat.2013.01.042
|
[10] |
X. Yang and Y. Zhang, Prediction of high-entropy stabilized solid–solution in multi-component alloys, Mater. Chem. Phys., 132(2012), No. 2-3, p. 233. doi: 10.1016/j.matchemphys.2011.11.021
|
[11] |
W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, and J.W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys, Intermetallics, 26(2012), p. 44. doi: 10.1016/j.intermet.2012.03.005
|
[12] |
T.T. Zuo, S.B. Ren, P.K. Liaw, and Y. Zhang, Processing effects on the magnetic and mechanical properties of FeCoNiAl0.2Si0.2 high entropy alloy, Int. J. Miner. Metall. Mater., 20(2013), No. 6, p. 549. doi: 10.1007/s12613-013-0764-x
|
[13] |
Z.F. Lei, X.J. Liu, Y. Wu, H. Wang, S.H. Jiang, S.D. Wang, X.D. Hui, Y.D. Wu, B. Gault, P. Kontis, D. Raabe, L. Gu, Q.H. Zhang, H.W. Chen, H.T. Wang, J.B. Liu, K. An, Q.S. Zeng, T.G. Nieh, and Z.P. Lu, Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes, Nature, 563(2018), No. 7732, p. 546. doi: 10.1038/s41586-018-0685-y
|
[14] |
C.B. Wei, X.H. Du, Y.P. Lu, H. Jiang, T.J. Li, and T.M. Wang, Novel as-cast AlCrFe2Ni2Ti05 high-entropy alloy with excellent mechanical properties, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1312. doi: 10.1007/s12613-020-2042-z
|
[15] |
L.M. Du, L.W. Lan, S. Zhu, H.J. Yang, X.H. Shi, P.K. Liaw, and J.W. Qiao, Effects of temperature on the tribological behavior of Al0.25CoCrFeNi high-entropy alloy, J. Mater. Sci. Technol., 35(2019), No. 5, p. 917. doi: 10.1016/j.jmst.2018.11.023
|
[16] |
Y.Z. Shi, B. Yang, X. Xie, J. Brechtl, K.A. Dahmen, and P.K. Liaw, Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior, Corros. Sci., 119(2017), p. 33. doi: 10.1016/j.corsci.2017.02.019
|
[17] |
S. Shuang, Z.Y. Ding, D. Chung, S.Q. Shi, and Y. Yang, Corrosion resistant nanostructured eutectic high entropy alloy, Corros. Sci., 164(2020), art. No. 108315. doi: 10.1016/j.corsci.2019.108315
|
[18] |
T. Chen, W.N. Wu, W.P. Li, and D.F. Liu, Laser cladding of nanoparticle TiC ceramic powder: Effects of process parameters on the quality characteristics of the coatings and its prediction model, Opt. Laser Technol., 116(2019), p. 345. doi: 10.1016/j.optlastec.2019.03.048
|
[19] |
Y. Zhang, T.F. Han, M. Xiao, and Y.F. Shen, Effect of process parameters on the microstructure and properties of laser-clad FeNiCoCrTi0.5 high-entropy alloy coating, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 630. doi: 10.1007/s12613-019-1958-7
|
[20] |
B.C. Li, H.M. Zhu, C.J. Qiu, and D.K. Zhang, Development of high strength and ductile martensitic stainless steel coatings with Nb addition fabricated by laser cladding, J. Alloys Compd., 832(2020), art. No. 154985. doi: 10.1016/j.jallcom.2020.154985
|
[21] |
M.Y. Ma, W.J. Xiong, Y. Lian, D. Han, C. Zhao, and J. Zhang, Modeling and optimization for laser cladding via multi-objective quantum-behaved particle swarm optimization algorithm, Surf. Coat. Technol., 381(2020), art. No. 125129. doi: 10.1016/j.surfcoat.2019.125129
|
[22] |
X. He, R.G. Song, and D.J. Kong, Effects of TiC on the microstructure and properties of TiC/TiAl composite coating prepared by laser cladding, Opt. Laser Technol., 112(2019), p. 339. doi: 10.1016/j.optlastec.2018.11.037
|
[23] |
W.R. Wang, W. Qi, L. Xie, X. Yang, J.T. Li, and Y. Zhang, Microstructure and corrosion behavior of (CoCrFeNi)95Nb5 high-entropy alloy coating fabricated by plasma spraying, Materials, 12(2019), No. 5, p. 694. doi: 10.3390/ma12050694
|
[24] |
T.M. Yue, H. Xie, X. Lin, H.O. Yang, and G.H. Meng, Microstructure of laser re-melted AlCoCrCuFeNi high entropy alloy coatings produced by plasma spraying, Entropy, 15(2013), No. 7, p. 2833.
|
[25] |
E. Celik, I. Ozdemir, E. Avci, and Y. Tsunekawa, Corrosion behaviour of plasma sprayed coatings, Surf. Coat. Technol., 193(2005), No. 1-3, p. 297. doi: 10.1016/j.surfcoat.2004.08.143
|
[26] |
L. Cao, S.Y. Chen, M.W. Wei, Q. Guo, J. Liang, C.S. Liu, and M. Wang, Effect of laser energy density on defects behavior of direct laser depositing 24CrNiMo alloy steel, Opt. Laser Technol., 111(2019), p. 541. doi: 10.1016/j.optlastec.2018.10.025
|
[27] |
H. Jiang, L. Jiang, D.X. Qiao, Y.P. Lu, T.M. Wang, Z.Q. Cao, and T.J. Li, Effect of niobium on microstructure and properties of the CoCrFeNbxNi high entropy alloys, J. Mater. Sci. Technol., 33(2017), No. 7, p. 712. doi: 10.1016/j.jmst.2016.09.016
|
[28] |
W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, and C.T. Liu, Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys, Intermetallics, 60(2015), p. 1. doi: 10.1016/j.intermet.2015.01.004
|
[29] |
S. Curiotto, N.H. Pryds, E. Johnson, and L. Battezzati, Effect of cooling rate on the solidification of Cu58Co42, Mater. Sci. Eng. A, 449-451(2007), p. 644. doi: 10.1016/j.msea.2006.02.375
|
[30] |
A. Munitz, A.M. Bamberger, S. Wannaparhun, and R. Abbaschian, Effects of supercooling and cooling rate on the microstructure of Cu–Co–Fe alloys, J. Mater. Sci., 41(2006), No. 10, p. 2749. doi: 10.1007/s10853-006-5598-8
|
[31] |
X.Y. Jiao, J. Wang, C.M. Wang, Z.Q. Gong, X.X. Pang, and S.M. Xiong, Effect of laser scanning speed on microstructure and wear properties of T15M cladding coating fabricated by laser cladding technology, Opt. Lasers Eng., 110(2018), p. 163. doi: 10.1016/j.optlaseng.2018.05.024
|
[32] |
X.Q. Dai, S.F. Zhou, M.F. Wang, J.B. Lei, C.X. Wang, and T. Wang, Microstructure evolution of phase separated Fe–Cu–Cr–C composite coatings by laser induction hybrid cladding, Surf. Coat. Technol., 324(2017), p. 518. doi: 10.1016/j.surfcoat.2017.06.032
|
[33] |
Z.L. Xu, H. Zhang, X.J. Du, Y.Z. He, H. Luo, G.S. Song, L. Mao, T.W. Zhou, and L.L. Wang, Corrosion resistance enhancement of CoCrFeMnNi high-entropy alloy fabricated by additive manufacturing, Corros. Sci., 177(2020), art. No. 108954. doi: 10.1016/j.corsci.2020.108954
|
[34] |
W.R. Wang, J.Q. Wang, Z.H. Sun, J.T. Li, L.F. Li, X. Song, X.D. Wen, L. Xie, and X. Yang, Effect of Mo and aging temperature on corrosion behavior of (CoCrFeNi)100−xMox high-entropy alloys, J. Alloys Compd., 812(2020), art. No. 152139. doi: 10.1016/j.jallcom.2019.152139
|
[35] |
J. Liu, H. Liu, P.J. Chen, and J.B. Hao, Microstructural characterization and corrosion behaviour of AlCoCrFeNiTix high-entropy alloy coatings fabricated by laser cladding, Surf. Coat. Technol., 361(2019), p. 63. doi: 10.1016/j.surfcoat.2019.01.044
|
[36] |
W. Yang, Y. Liu, S.J. Pang, P.K. Liaw, and T. Zhang, Bio-corrosion behavior and in vitro biocompatibility of equimolar TiZrHfNbTa high-entropy alloy, Intermetallics, 124(2020), art. No. 106845. doi: 10.1016/j.intermet.2020.106845
|
[37] |
C. Xiang, Z.M. Zhang, H.M. Fu, E.H. Han, H.F. Zhang, and J.Q. Wang, Microstructure and corrosion behavior of AlCoCrFeNiSi0.1 high-entropy alloy, Intermetallics, 114(2019), art. No. 106599. doi: 10.1016/j.intermet.2019.106599
|
[38] |
A. Ayyagari, C. Barthelemy, B. Gwalani, R. Banerjee, T.W. Scharf, and S. Mukherjee, Reciprocating sliding wear behavior of high entropy alloys in dry and marine environments, Mater. Chem. Phys., 210(2018), p. 162. doi: 10.1016/j.matchemphys.2017.07.031
|
[39] |
Y. Qiu, S. Thomas, D. Fabijanic, A.J. Barlow, H.L. Fraser, and N. Birbilis, Microstructural evolution, electrochemical and corrosion properties of AlxCoCrFeNiTiy high entropy alloys, Mater. Des., 170(2019), art. No. 107698. doi: 10.1016/j.matdes.2019.107698
|
[40] |
Q.Y. Zhou, S. Sheikh, P. Ou, D.C. Chen, Q. Hu, and S. Guo, Corrosion behavior of Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high-entropy in aqueous chloride solutions, Electrochem. Commun., 98(2019), p. 63. doi: 10.1016/j.elecom.2018.11.009
|
[41] |
C.T. Kwok, F.T. Cheng, and H.C. Man, Synergistic effect of cavitation erosion and corrosion of various engineering alloys in 3.5% NaCl solution, Mater. Sci. Eng. A, 290(2000), No. 1-2, p. 145. doi: 10.1016/S0921-5093(00)00899-6
|
[42] |
A. Singh, Y.H. Lin, I.B. Obot, E.E. Ebenso, K.R. Ansari, and M.A. Quraishi, Corrosion mitigation of J55 steel in 3.5% NaCl solution by a macrocyclic inhibitor, Appl. Surf. Sci., 356(2015), p. 341. doi: 10.1016/j.apsusc.2015.08.094
|
[43] |
Q. Bao, D. Zhang, D.D. Lv, and P. Wang, Effects of two main metabolites of sulphate-reducing bacteria on the corrosion of Q235 steels in 3.5wt% NaCl media, Corros. Sci., 65(2012), p. 405. doi: 10.1016/j.corsci.2012.08.044
|
[44] |
M. Ramezanzadeh, Z. Sanaei, G. Bahlakeh, and B. Ramezanzadeh, Highly effective inhibition of mild steel corrosion in 3.5% NaCl solution by green Nettle leaves extract and synergistic effect of eco-friendly cerium nitrate additive: Experimental, MD simulation and QM investigations, J. Mol. Liq., 256(2018), p. 67. doi: 10.1016/j.molliq.2018.02.021
|
[45] |
K. Farhadi, H. Zebhi, P.N. Moghadam, M. Es’haghi, and H. Ashassi-Sorkhabi, Electrochemical preparation of nano-colloidal polyaniline in polyacid matrix and its application to the corrosion protection of 430SS, Synth. Met., 195(2014), p. 29.
|
[46] |
J.H. Potgieter, P.A. Olubambi, L. Cornish, C.N. Machio, and El-Sayed M. Sherif, Influence of nickel additions on the corrosion behaviour of low nitrogen 22% Cr series duplex stainless steels, Corros. Sci., 50(2008), No. 9, p. 2572. doi: 10.1016/j.corsci.2008.05.023
|