Tingting Zhang, Wenxian Wang, Jie Zhang,  and Zhifeng Yan, Interfacial bonding characteristics and mechanical properties of H68/AZ31B clad plate, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1237-1248. https://doi.org/10.1007/s12613-020-2240-8
Cite this article as:
Tingting Zhang, Wenxian Wang, Jie Zhang,  and Zhifeng Yan, Interfacial bonding characteristics and mechanical properties of H68/AZ31B clad plate, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1237-1248. https://doi.org/10.1007/s12613-020-2240-8
Research Article

Interfacial bonding characteristics and mechanical properties of H68/AZ31B clad plate

+ Author Affiliations
  • Corresponding author:

    Tingting Zhang    E-mail: zhangtingting@tyut.edu.cn

  • Received: 2 September 2020Revised: 16 November 2020Accepted: 11 December 2020Available online: 12 December 2020
  • Interfacial bonding, microstructures, and mechanical properties of an explosively-welded H68/AZ31B clad plate were systematically studied. According to the results, the bonding interface demonstrated a “wavy-like” structure containing three typical zones/layers: (1) diffusion layer adjacent to the H68 brass plate; (2) solidification layer of melted metals at the interface; (3) a layer at the side of AZ31B alloy that experienced severe deformation. Mixed copper, CuZn2, and α-Mg phases were observed in the melted-solidification layer. Regular polygonal grains with twins were found at the H68 alloy side, while fine equiaxed grains were found at the AZ31B alloy side near the interface due to recrystallization. Nanoindentation results revealed the formation of brittle intermetallic CuZn2 phases at the bonding interface. The interface was bonded well through metallurgical reactions due to diffusion of Cu, Zn, and Mg atoms across the interface and metallurgic reaction of partially melted H68 and AZ31B alloys.
  • loading
  • [1]
    L.M. Liu, S.X. Wang, and M.L. Zhu, Study on TIG welding of dissimilar Mg alloy and Cu with Fe as interlayer, Sci. Technol. Weld. Joining, 11(2006), No. 5, p. 523. doi: 10.1179/174329306X122794
    [2]
    C.W. Tan, W.X. He, X.T. Gong, L.Q. Li, and J.C. Feng, Influence of laser power on microstructure and mechanical properties of fiber laser-tungsten inert gas hybrid welded Mg/Cu dissimilar joints, Mater. Des., 78(2015), p. 51. doi: 10.1016/j.matdes.2015.04.022
    [3]
    D.X. Ren and L.M. Liu, Interface microstructure and mechanical properties of arc spot welding Mg–steel dissimilar joint with Cu interlayer, Mater. Des., 59(2014), p. 369. doi: 10.1016/j.matdes.2014.03.006
    [4]
    B. Arcot, C. Cabral, J.M.E. Harper, and S.P. Murarka, Intermetallic reactions between copper and magnesium as an adhesion/barrier layer, MRS Online Proc. Lib., 225(1991), No. 1, p. 231.
    [5]
    G. Mahendran, V. Balasubramanian, and T. Senthilvelan, Influences of diffusion bonding process parameters on bond characteristics of Mg–Cu dissimilar joints, Trans. Nonferrous Met. Soc. China, 20(2010), No. 6, p. 997. doi: 10.1016/S1003-6326(09)60248-X
    [6]
    A. Macwan and D.L. Chen, Microstructure and mechanical properties of ultrasonic spot welded copper-to-magnesium alloy joints, Mater. Des., 84(2015), p. 261. doi: 10.1016/j.matdes.2015.06.104
    [7]
    A. Loureiro, R. Mendes, J.B. Ribeiro, R.M. Leal, and I. Galvão, Effect of explosive mixture on quality of explosive welds of copper to aluminium, Mater. Des., 95(2016), p. 256. doi: 10.1016/j.matdes.2016.01.116
    [8]
    G.H.S.F.L. Carvalho, R. Mendes, R.M. Leal, I. Galvão, and A. Loureiro, Effect of the flyer material on the interface phenomena in aluminium and copper explosive welds, Mater. Des., 122(2017), p. 172. doi: 10.1016/j.matdes.2017.02.087
    [9]
    T.T. Zhang, W.X. Wang, W. Zhang, Y. Wei, X.Q. Cao, Z.F. Yan, and J. Zhou, Microstructure evolution and mechanical properties of an AA6061/AZ31B alloy plate fabricated by explosive welding, J. Alloys Compd., 735(2018), p. 1759. doi: 10.1016/j.jallcom.2017.11.285
    [10]
    I.A. Bataev, D.V. Lazurenko, S. Tanaka, K. Hokamoto, A.A. Bataev, Y. Guo, and A.M. Jorge, High cooling rates and metastable phases at the interfaces of explosively welded materials, Acta Mater., 135(2017), p. 277. doi: 10.1016/j.actamat.2017.06.038
    [11]
    F. Findik, Recent developments in explosive welding, Mater. Des., 32(2011), No. 3, p. 1081. doi: 10.1016/j.matdes.2010.10.017
    [12]
    X.D. Yuan, W.X. Wang, X.Q. Cao, T.T. Zhang, R.S. Xie, and R.F. Liu, Numerical study on the interfacial behavior of Mg/Al plate in explosive/impact welding, Sci. Eng. Compos. Mater., 24(2017), No. 4, p. 581. doi: 10.1515/secm-2015-0316
    [13]
    R.F. Liu, W.X. Wang, T.T. Zhang, and X.D. Yuan, Numerical study of Ti/Al/Mg three-layer plates on the interface behavior in explosive welding, Sci. Eng. Compos. Mater., 24(2017), No. 6, p. 833. doi: 10.1515/secm-2015-0491
    [14]
    X. Wang, Y.Y. Zheng, H.X. Liu, Z.B. Shen, Y. Hu, W. Li, Y.Y. Gao, and C. Guo, Numerical study of the mechanism of explosive/impact welding using Smoothed Particle Hydrodynamics method, Mater. Des., 35(2012), p. 210. doi: 10.1016/j.matdes.2011.09.047
    [15]
    Y. Aizawa, J. Nishiwaki, Y. Harada, S. Muraishi, and S. Kumai, Experimental and numerical analysis of the formation behavior of intermediate layers at explosive welded Al/Fe joint interfaces, J. Manuf. Processes, 24(2016), p. 100. doi: 10.1016/j.jmapro.2016.08.002
    [16]
    A.A. Deribas, V.M. Kudinov, and F.I. Matveenkov, Effect of the initial parameters on the process of wave formation in explosive welding, Combust. Explos. Shock Waves, 3(1967), No. 4, p. 344.
    [17]
    N. Zhang, W.X. Wang, X.Q. Cao, and J.Q. Wu, The effect of annealing on the interface microstructure and mechanical characteristics of AZ31B/AA6061 composite plates fabricated by explosive welding, Mater. Des., 65(2015), p. 1100. doi: 10.1016/j.matdes.2014.08.025
    [18]
    Y.B. Yan, Z.W. Zhang, W. Shen, J.H. Wang, L.K. Zhang, and B.A. Chin, Microstructure and properties of magnesium AZ31B–aluminum 7075 explosively welded composite plate, Mater. Sci. Eng. A, 527(2010), No. 9, p. 2241. doi: 10.1016/j.msea.2009.12.007
    [19]
    D.M. Fronczek, R. Chulist, L. Litynska-Dobrzynska, Z. Szulc, P. Zieba, and J. Wojewoda-Budka, Microstructure changes and phase growth occurring at the interface of the Al/Ti explosively welded and annealed joints, J. Mater. Eng. Perform., 25(2016), No. 8, p. 3211. doi: 10.1007/s11665-016-1978-7
    [20]
    D.M. Fronczek, J. Wojewoda-Budka, R. Chulist, A. Sypien, A. Korneva, Z. Szulc, N. Schell, and P. Zieba, Structural properties of Ti/Al clads manufactured by explosive welding and annealing, Mater. Des., 91(2016), p. 80. doi: 10.1016/j.matdes.2015.11.087
    [21]
    H.R.Z. Rajani and S.A.A.A. Mousavi, The effect of explosive welding parameters on metallurgical and mechanical interfacial features of Inconel 625/plain carbon steel bimetal plate, Mater. Sci. Eng. A, 556(2012), p. 454. doi: 10.1016/j.msea.2012.07.012
    [22]
    C. Borchers, M. Lenz, M. Deutges, H. Klein, F. Gärtner, M. Hammerschmidt, and H. Kreye, Microstructure and mechanical properties of medium-carbon steel bonded on low-carbon steel by explosive welding, Mater. Des., 89(2016), p. 369. doi: 10.1016/j.matdes.2015.09.164
    [23]
    B. Gulenc, Investigation of interface properties and weldability of aluminum and copper plates by explosive welding method, Mater. Des., 29(2008), No. 1, p. 275. doi: 10.1016/j.matdes.2006.11.001
    [24]
    S.A.A.A. Mousavi and S.T.S. Al-Hassani, Finite element simulation of explosively-driven plate impact with application to explosive welding, Mater. Des., 29(2008), No. 1, p. 1. doi: 10.1016/j.matdes.2006.12.012
    [25]
    A.A.A. Mousavi and S.T.S. Al-Hassani, Numerical and experimental studies of the mechanism of the wavy interface formations in explosive/impact welding, J. Mech. Phys. Solids, 53(2005), No. 11, p. 2501. doi: 10.1016/j.jmps.2005.06.001
    [26]
    D.M. Fronczek, R. Chulist, L. Litynska-Dobrzynska, S. Kac, N. Schell, Z. Kania, Z. Szulc, and J. Wojewoda-Budka, Microstructure and kinetics of intermetallic phase growth of three-layered A1050/AZ31/A1050 clads prepared by explosive welding combined with subsequent annealing, Mater. Des., 130(2017), p. 120. doi: 10.1016/j.matdes.2017.05.051
    [27]
    P.W. Chen, J.R. Feng, Q. Zhou, E.F. An, J.B. Li, Y. Yuan, and S.L. Ou, Investigation on the explosive welding of 1100 aluminum alloy and AZ31 magnesium alloy, J. Mater. Eng. Perform., 25(2016), No. 7, p. 2635. doi: 10.1007/s11665-016-2088-2
    [28]
    M. Acarer, B. Gülenç, and F. Findik, The influence of some factors on steel/steel bonding quality on there characteristics of explosive welding joints, J. Mater. Sci., 39(2004), No. 21, p. 6457. doi: 10.1023/B:JMSC.0000044883.33007.20
    [29]
    Y. Kaya and N. Kahraman, An investigation into the explosive welding/cladding of Grade A ship steel/AISI 316L austenitic stainless steel, Mater. Des., 52(2013), p. 367. doi: 10.1016/j.matdes.2013.05.033
    [30]
    A.S. Bahrani, T.J. Black, and B. Crossland, The mechanics of wave formation in explosive welding, Proc. R. Soc. Lond. A, 296(1967), p. 123. doi: 10.1098/rspa.1967.0010
    [31]
    Q.L. Chu, M. Zhang, J.H. Li, and C. Yan, Experimental and numerical investigation of microstructure and mechanical behavior of titanium/steel interfaces prepared by explosive welding, Mater. Sci. Eng. A, 689(2017), p. 323. doi: 10.1016/j.msea.2017.02.075
    [32]
    S.Y. Chen, Z.W. Wu, K.X. Liu, X.J. Li, N. Luo, and G.X. Lu, Atomic diffusion behavior in Cu–Al explosive welding process, J. Appl. Phys., 113(2013), No. 4, art. No. 044901. doi: 10.1063/1.4775788
    [33]
    T.T. Zhang, W.X. Wang, J. Zhou, X.Q. Cao, R.S. Xie, and Y. Wei, Molecular dynamics simulations and experimental investigations of atomic diffusion behavior at bonding interface in an explosively welded Al/Mg alloy composite plate, Acta Metall. Sinica Engl. Lett., 30(2017), No. 10, p. 983. doi: 10.1007/s40195-017-0628-x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(1062) PDF Downloads(24) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return