Cite this article as: |
Xiao-min You, Xue-feng She, Jing-song Wang, Qing-guo Xue, and Ze-yi Jiang, Preparation of CaO-containing carbon pellets from coking coal and calcium oxide: Effects of temperature, pore distribution and carbon structure on compressive strength in pyrolysis furnace, Int. J. Miner. Metall. Mater., 28(2021), No. 7, pp. 1153-1163. https://doi.org/10.1007/s12613-021-2255-9 |
Xue-feng She E-mail: shexuefeng@ustb.edu.cn
CaO-containing carbon pellets (CCCP) were successfully prepared from well-mixed coking coal (CC) and calcium oxide (CaO) and roasted at different pyrolysis temperatures. The effects of temperature, pore distribution, and carbon structure on the compressive strength of CCCP was investigated in a pyrolysis furnace (350–750°C). The results showed that as the roasting temperature increased, the compressive strength also increased and furthermore, structural defects and imperfections in the carbon crystallites were gradually eliminated to form more organized char structures, thus forming high-ordered CC. Notably, the CCCP preheated at 750°C exhibited the highest compressive strength. A positive relationship between the compressive strength and pore-size homogeneity was established. A linear relationship between the compressive strength of the CCCP and the average stack height of CC was observed. Additionally, a four-stage caking mechanism was developed.
[1] |
C.F. Xin and X.R. Qian, Reviews on technical routes for chemicals production from carbide acetylene, Prog. Chem., 6(1994), No. 1, p. 62.
|
[2] |
G.D. Li, Q.Y. Liu, and Z.Y. Liu, Kinetic behaviors of CaC2 production from coke and CaO, Ind. Eng. Chem. Res., 52(2013), No. 16, p. 5587. doi: 10.1021/ie302816g
|
[3] |
J.J. Mu and R.A. Hard, A rotary kiln process for making calcium carbide, Ind. Eng. Chem. Res., 26(1987), No. 10, p. 2063. doi: 10.1021/ie00070a022
|
[4] |
Y. Mi, D.X. Zheng, J. Guo, X.H. Chen, and P. Jin, Assessment of energy use and carbon footprint for low-rank coal-based oxygen-thermal and electro-thermal calcium carbide manufacturing processes, Fuel Process. Technol., 119(2014), p. 305. doi: 10.1016/j.fuproc.2013.10.027
|
[5] |
J.Q. Zhang, Z.S. Wang, T. Li, Z. Wang, S. Zhang, M. Zhong, Y.E. Liu, and X.Z. Gong, Preparation of CaO-containing carbon pellet from recycling of carbide slag: Effects of temperature and H3PO4, Waste Manage., 84(2019), p. 64. doi: 10.1016/j.wasman.2018.11.033
|
[6] |
Z.K. Li, Z.Y. Liu, R.X. Wang, X.J. Guo, and Q.Y. Liu, Conversion of bio-char to CaC2 at low temperatures-morphology and kinetics, Chem. Eng. Sci., 192(2018), p. 516. doi: 10.1016/j.ces.2018.07.059
|
[7] |
X.Z. Gong, J.Q. Zhang, Z. Wang, D. Wang, J.H. Liu, X.D. Jing, G.Y. Qian, and C. Wang, Development of calcium coke for CaC2 production using calcium carbide slag and coking coal, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 76. doi: 10.1007/s12613-020-2049-5
|
[8] |
R.X. Wang, Z.Y. Liu, L.M. Ji, X.J. Guo, X. Lin, J.F. Wu, and Q.Y. Liu, Reaction kinetics of CaC2 formation from powder and compressed feeds, Front. Chem. Sci. Eng., 10(2016), No. 4, p. 517. doi: 10.1007/s11705-016-1585-z
|
[9] |
Q. Xu, Y.S. Li, S.P. Deng, Y.L. He, L. Li, and H.J. Yu, Modeling of multiprocess behavior for feedstock-mixed porous pellet: Heat and mass transfer, chemical reaction, and phase change, ACS Sustainable Chem. Eng., 7(2019), No. 14, p. 12510.
|
[10] |
S. Zhang, X.Z. Gong, Z. Wang, J.W. Cao, and Z.C. Guo, Preparation of block CaO from carbide slag and its compressive strength improved by H3PO4, Int. J. Miner. Process., 129(2014), p. 6. doi: 10.1016/j.minpro.2014.04.003
|
[11] |
S.W. Yin, H.Y. Wang, L. Wang, C.P. Liu, and L.G. Tong, Influencing factors and evaluation system for Carbon-Calcium pellet performance in a pyrolysis furnace, Energy, 214(2021), art. No. 118991. doi: 10.1016/j.energy.2020.118991
|
[12] |
J.T. Morehead and G. De Chalmot, The manufacture of calcium carbide, J. Am. Chem. Soc., 18(1896), No. 4, p. 311. doi: 10.1021/ja02090a001
|
[13] |
J.T. Ju, C.M. Tang, X.D. Xing, S. Ren, and G.H. Ji, Effect of BaSO4 on the compressive strength and reduction behavior of pellets, Metall. Res. Technol., 117(2020), No. 2, art. No. 207. doi: 10.1051/metal/2020022
|
[14] |
J. Song, C. Chen, S. Zhu, M. Zhu, J. Dai, U. Ray, Y. Li, Y. Kuang, Y. Li, N. Quispe, Y. Yao, A. Gong, U.H. Leiste, H.A. Bruck, J.Y. Zhu, A. Vellore, H. Li, M.L. Minus, Z. Jia, A. Martini, T. Li, and L. Hu, Processing bulk natural wood into a high-performance structural material, Nature, 554(2018), No. 7691, p. 224. doi: 10.1038/nature25476
|
[15] |
T.F. Song, J.L. Zhang, G.W. Wang, H.Y. Wang, R.S. Xu, and Q.H. Pang, Influence mechanism of lignite and lignite semi-coke addition on drum strength of coke, ISIJ Int., 58(2018), No. 2, p. 253. doi: 10.2355/isijinternational.ISIJINT-2017-447
|
[16] |
J.W. Taylor and L. Hennah, The nature of strength-controlling structural flaws in formed coke, Fuel, 71(1992), No. 1, p. 59. doi: 10.1016/0016-2361(92)90193-R
|
[17] |
J. Zhao, H.B. Zuo, G.W. Wang, J.S. Wang, and Q.G. Xue, Improving the coke property through adding HPC extracted from the mixture of low-rank coal and biomass, Energy Fuels, 34(2020), No. 2, p. 1802. doi: 10.1021/acs.energyfuels.9b03459
|
[18] |
C.D. Sheng, Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity, Fuel, 86(2007), No. 15, p. 2316. doi: 10.1016/j.fuel.2007.01.029
|
[19] |
Y.J. Wang, H.B. Zuo, J. Zhao, and W.L. Zhang, Using HyperCoal to prepare metallurgical coal briquettes via hot-pressing, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 547. doi: 10.1007/s12613-019-1763-3
|
[20] |
X.J. Ning, W. Liang, J.L. Zhang, G.W. Wang, Y.J. Li, and C.H. Jiang, Effect of ash on coal structure and combustibility, Int. J. Miner. Metall. Mater., 26(2019), No. 8, p. 973. doi: 10.1007/s12613-019-1812-y
|
[21] |
H.F. Shui, F. He, Y. Wu, C.X. Pan, Z.C. Wang, Z.P. Lei, S.B. Ren, and S.G. Kang, Study on the use of the thermal dissolution soluble fraction from shenfu sub-bituminous coal in coke-making coal blends, Energy Fuels, 29(2015), No. 3, p. 1558. doi: 10.1021/ef502736a
|
[22] |
J. Ibarra, E. Muñoz, and R. Moliner, FTIR study of the evolution of coal structure during the coalification process, Org. Geochem., 24(1996), No. 6-7, p. 725. doi: 10.1016/0146-6380(96)00063-0
|
[23] |
H.J. Song, G.R. Liu, J.Z. Zhang, and J.H. Wu, Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method, Fuel Process. Technol., 156(2017), p. 454. doi: 10.1016/j.fuproc.2016.10.008
|
[24] |
E.L. Zodrow, M. Mastalerz, U. Werner-Zwanziger, and J.A. D’Angelo, Medullosalean fusain trunk from the roof rocks of a coal seam: Insight from FTIR and NMR (Pennsylvanian Sydney Coalfield, Canada), Int. J. Coal Geol., 82(2010), No. 1-2, p. 116. doi: 10.1016/j.coal.2010.02.006
|
[25] |
A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Pöschl, Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information, Carbon, 43(2005), No. 8, p. 1731. doi: 10.1016/j.carbon.2005.02.018
|
[26] |
M.J. Wang, D.G. Roberts, M.A. Kochanek, D.J. Harris, L.P. Chang, and C.Z. Li, Raman spectroscopic investigations into links between intrinsic reactivity and char chemical structure, Energy Fuels, 28(2014), No. 1, p. 285. doi: 10.1021/ef401281h
|
[27] |
H.Y. Liu, L. Xu, Y. Jin, B.G. Fan, X.L. Qiao, and Y.X. Yang, Effect of coal rank on structure and dielectric properties of chars, Fuel, 153(2015), p. 249. doi: 10.1016/j.fuel.2015.03.008
|
[28] |
K.J. Li, R. Khanna, J.L. Zhang, M. Barati, Z.J. Liu, T. Xu, T.J. Yang, and V. Sahajwalla, Comprehensive investigation of various structural features of bituminous coals using advanced analytical techniques, Energy Fuels, 29(2015), No. 11, p. 7178. doi: 10.1021/acs.energyfuels.5b02064
|
[29] |
N. Li, G.S. Te, Q.S. Liu, Y.P. Ban, Y. Wang, X.R. Zhang, J. Wang, R.X. He, and K.D. Zhi, Effect of metal ions on the steam gasification performance of demineralized Shengli lignite char, Int. J. Hydrogen Energy, 41(2016), No. 48, p. 22837. doi: 10.1016/j.ijhydene.2016.09.018
|
[30] |
H. Ullah, B.L. Chen, A. Shahab, F. Naseem, A. Rashid, L. Lun, B. Yousaf, and S. Khan, Influence of hydrothermal treatment on selenium emission-reduction and transformation from low-ranked coal, J. Clean. Prod., 267(2020), art. No. 122070. doi: 10.1016/j.jclepro.2020.122070
|
[31] |
X.J. Li, J.I. Hayashi, and C.Z. Li, FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal, Fuel, 85(2006), No. 12-13, p. 1700. doi: 10.1016/j.fuel.2006.03.008
|
[32] |
H.S. Shim, R.H. Hurt, and N.Y.C. Yang, A methodology for analysis of 002 lattice fringe images and its application to combustion-derived carbons, Carbon, 38(2000), No. 1, p. 29. doi: 10.1016/S0008-6223(99)00096-2
|
[33] |
H. Takagi, K. Maruyama, N. Yoshizawa, Y. Yamada, and Y. Sato, XRD analysis of carbon stacking structure in coal during heat treatment, Fuel, 83(2004), No. 17-18, p. 2427. doi: 10.1016/j.fuel.2004.06.019
|