Ya Wei, Yu Fu, Zhi-min Pan, Yi-chong Ma, Hong-xu Cheng, Qian-cheng Zhao, Hong Luo, and Xiao-gang Li, Influencing factors and mechanism of high-temperature oxidation of high-entropy alloys: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 6, pp. 915-930. https://doi.org/10.1007/s12613-021-2257-7
Cite this article as:
Ya Wei, Yu Fu, Zhi-min Pan, Yi-chong Ma, Hong-xu Cheng, Qian-cheng Zhao, Hong Luo, and Xiao-gang Li, Influencing factors and mechanism of high-temperature oxidation of high-entropy alloys: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 6, pp. 915-930. https://doi.org/10.1007/s12613-021-2257-7
Invited Review

Influencing factors and mechanism of high-temperature oxidation of high-entropy alloys: A review

+ Author Affiliations
  • Corresponding author:

    Hong Luo    E-mail: luohong@ustb.edu.cn

  • Received: 19 November 2020Revised: 18 January 2021Accepted: 20 January 2021Available online: 22 January 2021
  • High-temperature oxidation is a common failure in high-temperature environments, which widely occur in aircraft engines and aerospace thrusters; as a result, the development of anti-high-temperature oxidation materials has been pursued. Ni-based alloys are a common high-temperature material; however, they are too expensive. High-entropy alloys are alternatives for the anti-oxidation property at high temperatures because of their special structure and properties. The recent achievements of high-temperature oxidation are reviewed in this paper. The high-temperature oxidation environment, temperature, phase structure, alloy elements, and preparation methods of high-entropy alloys are summarized. The reason why high-entropy alloys have anti-oxidation ability at high temperatures is illuminated. Current research, material selection, and application prospects of high-temperature oxidation are introduced.

  • loading
  • [1]
    X.B. Meng, Q. Lu, J.G. Li, T. Jin, X.F. Sun, J. Zhang, Z.Q. Chen, Y.H. Wang, and Z.Q. Hu, Modes of grain selection in spiral selector during directional solidification of nickel-base superalloys, J. Mater. Sci. Technol., 28(2012), No. 3, p. 214. doi: 10.1016/S1005-0302(12)60044-9
    [2]
    X.B. Meng, J.G. Li, T. Jin, X.F. Sun, C.B. Sun, and Z.Q. Hu, Evolution of grain selection in spiral selector during directional solidification of nickel-base superalloys, J. Mater. Sci. Technol., 27(2011), No. 2, p. 118. doi: 10.1016/S1005-0302(11)60036-4
    [3]
    R. Darolia, Development of strong, oxidation and corrosion resistant nickel-based superalloys: Critical review of challenges, progress and prospects, Int. Mater. Rev., 64(2019), No. 6, p. 355. doi: 10.1080/09506608.2018.1516713
    [4]
    J.H. Chen, P.M. Rogers, and J.A. Little, Oxidation behavior of several chromia-forming commercial nickel-base superalloys, Oxid. Met., 47(1997), No. 5-6, p. 381. doi: 10.1007/BF02134783
    [5]
    Z.H. Tan, X.G. Wang, W. Song, Y.H. Yang, J.L. Liu, J.D. Liu, L. Yang, Y.Z. Zhou, and X.F. Sun, Oxidation behavior of a novel nickel-based single crystal superalloy at elevated temperature, Vacuum, 175(2020), art. No. 109284. doi: 10.1016/j.vacuum.2020.109284
    [6]
    B.H. Yu, Y.P. Li, Y. Nie, and H. Mei, High temperature oxidation behavior of a novel cobalt–nickel-base superalloy, J. Alloys Compd., 765(2018), p. 1148. doi: 10.1016/j.jallcom.2018.06.275
    [7]
    A. Sato, Y.L. Chiu, and R.C. Reed, Oxidation of nickel-based single-crystal superalloys for industrial gas turbine applications, Acta Mater., 59(2011), No. 1, p. 225. doi: 10.1016/j.actamat.2010.09.027
    [8]
    B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375-377(2004), p. 213. doi: 10.1016/j.msea.2003.10.257
    [9]
    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. doi: 10.1002/adem.200300567
    [10]
    D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, and J. Tiley, Exploration and development of high entropy alloys for structural applications, Entropy, 16(2014), No. 1, p. 494. doi: 10.3390/e16010494
    [11]
    J.W. Yeh, Recent progress in high-entropy alloys, Eur. J. Control, 31(2006), No. 6, p. 633.
    [12]
    C. Zhang, F. Zhang, K. Jin, H.B. Bei, S.L. Chen, W.S. Cao, J. Zhu, and D.C. Lv, Understanding of the elemental diffusion behavior in concentrated solid solution alloys, J. Phase Equilib. Diffus., 38(2017), No. 4, p. 434. doi: 10.1007/s11669-017-0580-5
    [13]
    Y. Zou, S. Maiti, W. Steurer, and R. Spolenak, Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy, Acta Mater., 65(2014), p. 85. doi: 10.1016/j.actamat.2013.11.049
    [14]
    K.Y. Tsai, M.H. Tsai, and J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Mater., 61(2013), No. 13, p. 4887. doi: 10.1016/j.actamat.2013.04.058
    [15]
    E.J. Pickering and N.G. Jones, High-entropy alloys: A critical assessment of their founding principles and future prospects, Int. Mater. Rev., 61(2016), No. 3, p. 183. doi: 10.1080/09506608.2016.1180020
    [16]
    S. Zhu, W.B. Du, X.M. Wang, and G.F. Han, High mixing entropy alloys design with high anticorrosion and wear-resistance properties, Adv. Mater. Res., 815(2013), p. 19. doi: 10.4028/www.scientific.net/AMR.815.19
    [17]
    J.W. Yeh, Physical metallurgy of high-entropy alloys, JOM, 67(2015), No. 10, p. 2254. doi: 10.1007/s11837-015-1583-5
    [18]
    Y.S. Huang, L. Chen, H.W. Lui, M.H. Cai, and J.W. Yeh, Microstructure, hardness, resistivity and thermal stability of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy, Mater. Sci. Eng. A, 457(2007), No. 1-2, p. 77. doi: 10.1016/j.msea.2006.12.001
    [19]
    S. Praveen, A. Anupam, R. Tilak, and R.S. Kottada, Phase evolution and thermal stability of AlCoCrFe high entropy alloy with carbon as unsolicited addition from milling media, Mater. Chem. Phys., 210(2018), p. 57. doi: 10.1016/j.matchemphys.2017.10.040
    [20]
    V. Dolique, A.L. Thomann, P. Brault, Y. Tessier, and P. Gillon, Thermal stability of AlCoCrCuFeNi high entropy alloy thin films studied by in-situ XRD analysis, Surf. Coat. Technol., 204(2010), No. 12-13, p. 1989. doi: 10.1016/j.surfcoat.2009.12.006
    [21]
    A. Karati, K. Guruvidyathri, V.S. Hariharan, and B.S. Murty, Thermal stability of AlCoFeMnNi high-entropy alloy, Scripta Mater., 162(2019), p. 465. doi: 10.1016/j.scriptamat.2018.12.017
    [22]
    Q.L. Xu, Y. Zhang, S.H. Liu, C.J. Li, and C.X. Li, High-temperature oxidation behavior of CuAlNiCrFe high-entropy alloy bond coats deposited using high-speed laser cladding process, Surf. Coat. Technol., 398(2020), art. No. 126093. doi: 10.1016/j.surfcoat.2020.126093
    [23]
    Y.P. Lin, T.F. Yang, L. Lang, C. Shan, H.Q. Deng, W.Y. Hu, and F. Gao, Enhanced radiation tolerance of the Ni–Co–Cr–Fe high-entropy alloy as revealed from primary damage, Acta Mater., 196(2020), p. 133. doi: 10.1016/j.actamat.2020.06.027
    [24]
    C.M. Barr, J.E. Nathaniel, K.A. Unocic, J.P. Liu, Y. Zhang, Y.Q. Wang, and M.L. Taheri, Exploring radiation induced segregation mechanisms at grain boundaries in equiatomic CoCrFeNiMn high entropy alloy under heavy ion irradiation, Scripta Mater., 156(2018), p. 80. doi: 10.1016/j.scriptamat.2018.06.041
    [25]
    G. Pu, L.W. Lin, R. Ang, K. Zhang, B. Liu, B. Liu, T. Peng, S.F. Liu, and Q.R. Li, Outstanding radiation tolerance and mechanical behavior in ultra-fine nanocrystalline Al1.5CoCrFeNi high entropy alloy films under He ion irradiation, Appl. Surf. Sci., 516(2020), art. No. 146129. doi: 10.1016/j.apsusc.2020.146129
    [26]
    D. Patel, M.D. Richardson, B. Jim, S. Akhmadaliev, R. Goodall, and A.S. Gandy, Radiation damage tolerance of a novel metastable refractory high entropy alloy V2.5Cr1.2WMoCo0.04, J. Nucl. Mater., 531(2020), art. No. 152005. doi: 10.1016/j.jnucmat.2020.152005
    [27]
    P. Lu, J.E. Saal, G.B. Olson, T.S. Li, O.J. Swanson, G.S. Frankel, A.Y. Gerard, K.F. Quiambao, and J.R. Scully, Computational materials design of a corrosion resistant high entropy alloy for harsh environments, Scripta Mater., 153(2018), p. 19. doi: 10.1016/j.scriptamat.2018.04.040
    [28]
    S. Shuang, Z.Y. Ding, D. Chung, S.Q. Shi, and Y. Yang, Corrosion resistant nanostructured eutectic high entropy alloy, Corros. Sci., 164(2020), art. No. 108315. doi: 10.1016/j.corsci.2019.108315
    [29]
    P. Muangtong, A. Rodchanarowan, D. Chaysuwan, N. Chanlek, and R. Goodall, The corrosion behaviour of CoCrFeNi–x (x = Cu, Al, Sn) high entropy alloy systems in chloride solution, Corros. Sci., 172(2020), art. No. 108740. doi: 10.1016/j.corsci.2020.108740
    [30]
    X. Wang and Y.P. Zhang, Microstructures and corrosion resistance properties of as-cast and homogenized AlFeNiCuCr high entropy alloy, Mater. Chem. Phys., 254(2020), art. No. 123440. doi: 10.1016/j.matchemphys.2020.123440
    [31]
    X.Y. Wang, Q. Liu, Y.B. Huang, L. Xie, Q. Xu, and T.X. Zhao, Effect of Ti content on the microstructure and corrosion resistance of CoCrFeNiTix high entropy alloys prepared by laser cladding, Materials, 13(2020), No. 10, art. No. 2209. doi: 10.3390/ma13102209
    [32]
    H. Cheng, Y.C. Lin, D.G. He, Y.L. Qiu, J.C. Zhu, and M.S. Chen, Influences of stress-aging on the precipitation behavior of δ phase (Ni3Nb) in a nickel-based superalloy, Mater. Des., 197(2021), art. No. 109256. doi: 10.1016/j.matdes.2020.109256
    [33]
    J. Yang, J. Wu, C.Y. Zhang, S.D. Zhang, B.J. Yang, W. Emori, and J.Q. Wang, Effects of Mn on the electrochemical corrosion and passivation behavior of CoFeNiMnCr high-entropy alloy system in H2SO4 solution, J. Alloys Compd., 819(2020), art. No. 152943. doi: 10.1016/j.jallcom.2019.152943
    [34]
    R.B. Nair, H.S. Arora, and H.S. Grewal, Enhanced cavitation erosion resistance of a friction stir processed high entropy alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1353. doi: 10.1007/s12613-020-2000-9
    [35]
    N. Malatji, A.P.I. Popoola, T. Lengopeng, and S. Pityana, Effect of Nb addition on the microstructural, mechanical and electrochemical characteristics of AlCrFeNiCu high-entropy alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1332. doi: 10.1007/s12613-020-2178-x
    [36]
    H. Jiang, D.X. Qiao, W.N. Jiao, K.M. Han, Y.P. Lu, and P.K. Liaw, Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy, J. Mater. Sci. Technol., 61(2021), p. 119. doi: 10.1016/j.jmst.2020.05.053
    [37]
    W.Y. Zhang, D.S. Yan, W.J. Lu, and Z.M. Li, Carbon and nitrogen co-doping enhances phase stability and mechanical properties of a metastable high-entropy alloy, J. Alloys Compd., 831(2020), art. No. 154799. doi: 10.1016/j.jallcom.2020.154799
    [38]
    H. Ma and C.H. Shek, Effects of Hf on the microstructure and mechanical properties of CoCrFeNi high entropy alloy, J. Alloys Compd., 827(2020), art. No. 154159. doi: 10.1016/j.jallcom.2020.154159
    [39]
    Y. Dong, Z.Q. Yao, X. Huang, F.M. Du, C.Q. Li, A.F. Chen, F. Wu, Y.Q. Cheng, and Z.R. Zhang, Microstructure and mechanical properties of AlCoxCrFeNi3−x eutectic high-entropy-alloy system, J. Alloys Compd., 823(2020), art. No. 153886. doi: 10.1016/j.jallcom.2020.153886
    [40]
    Q.Q. Wei, G.Q. Luo, J. Zhang, P.G. Chen, Q. Shen, and L.M. Zhang, Effect of raw material forms on the microstructure and mechanical properties of MoNbRe0.5TaW high-entropy alloy, Mater. Sci. Eng. A, 794(2020), art. No. 139632. doi: 10.1016/j.msea.2020.139632
    [41]
    Z. Wang, C. Wang, Y.L. Zhao, T.H. Huang, C.L. Li, J.J. Kai, C.T. Liu, and C.H. Hsueh, Growth, microstructure and mechanical properties of CoCrFeMnNi high entropy alloy films, Vacuum, 179(2020), art. No. 109553. doi: 10.1016/j.vacuum.2020.109553
    [42]
    M. Zhang, J.X. Hou, H.J. Yang, Y.Q. Tan, X.J. Wang, X.H. Shi, R.P. Guo, and J.W. Qiao, Tensile strength prediction of dual-phase Al0.6CoCrFeNi high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1341. doi: 10.1007/s12613-020-2084-2
    [43]
    M. Kang, K.R. Lim, J.W. Won, K.S. Lee, and Y.S. Na, Al–Ti-containing lightweight high-entropy alloys for intermediate temperature applications, Entropy, 20(2018), No. 5, art. No. 355. doi: 10.3390/e20050355
    [44]
    W. Kai, F.C. Chien, F.P. Cheng, R.T. Huang, J.J. Kai, and C.T. Liu, The corrosion of an equimolar FeCoNiCrMn high-entropy alloy in various CO2/CO mixed gases at 700 and 950°C, Corros. Sci., 153(2019), p. 150. doi: 10.1016/j.corsci.2019.03.030
    [45]
    W. Kai, F.P. Cheng, F.C. Chien, Y.R. Lin, D. Chen, J.J. Kai, C.T. Liu, and C.J. Wang, The oxidation behavior of a Ni2FeCoCrAl0.5 high-entropy superalloy in O2-containing environments, Corros. Sci., 158(2019), art. No. 108093. doi: 10.1016/j.corsci.2019.108093
    [46]
    H. Shi, C.C. Tang, A. Jianu, R. Fetzer, A. Weisenburger, M. Steinbrueck, M. Grosse, R. Stieglitz, and G. Müller, Oxidation behavior and microstructure evolution of alumina-forming austenitic & high entropy alloys in steam environment at 1200°C, Corros. Sci., 170(2020), art. No. 108654. doi: 10.1016/j.corsci.2020.108654
    [47]
    W. Kai, F.P. Cheng, C.Y. Liao, C.C. Li, R.T. Huang, and J.J. Kai, The oxidation behavior of the quinary FeCoNiCrSix high-entropy alloys, Mater. Chem. Phys., 210(2018), p. 362. doi: 10.1016/j.matchemphys.2017.06.017
    [48]
    W. Kai, F.P. Cheng, Y.R. Lin, C.W. Chuang, R.T. Huang, D. Chen, J.J. Kai, C.T. Liu, and C.J. Wang, The oxidation behavior of Ni2FeCoCrAlx high-entropy alloys in dry air, J. Alloys Compd., 836(2020), art. No. 155518. doi: 10.1016/j.jallcom.2020.155518
    [49]
    D. Huang, J.S. Lu, Y.X. Zhuang, C.X. Tian, and Y.B. Li, The role of Nb on the high temperature oxidation behavior of CoCrFeMnNbxNi high-entropy alloys, Corros. Sci., 158(2019), art. No. 108088. doi: 10.1016/j.corsci.2019.07.012
    [50]
    X. Yang and Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys., 132(2012), No. 2-3, p. 233. doi: 10.1016/j.matchemphys.2011.11.021
    [51]
    B. Gorr, M. Azim, H.J. Christ, T. Mueller, D. Schliephake, and M. Heilmaier, Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys, J. Alloys Compd., 624(2015), p. 270. doi: 10.1016/j.jallcom.2014.11.012
    [52]
    V. Pacheco, G. Lindwall, D. Karlsson, J. Cedervall, S. Fritze, G. Ek, P. Berastegui, M. Sahlberg, and U. Jansson, Thermal stability of the HfNbTiVZr high-entropy alloy, Inorg. Chem., 58(2019), No. 1, p. 811. doi: 10.1021/acs.inorgchem.8b02957
    [53]
    C.V.S. Raju, D. Venugopal, P.R. Srikanth, K. Lokeshwaran, M. Srinivas, C.J. Chary, and A.A. Kumar, Effect of aluminum addition on the properties of CoCuFeNiTi high entropy alloys, Mater. Today: Proc., 5(2018), No. 13, p. 26823. doi: 10.1016/j.matpr.2018.08.163
    [54]
    C.W. Tsai, M.H. Tsai, J.W. Yeh, and C.C. Yang, Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy, J. Alloys Compd., 490(2010), No. 1-2, p. 160. doi: 10.1016/j.jallcom.2009.10.088
    [55]
    S.F. Ge, H.M. Fu, L. Zhang, H.H. Mao, H. Li, A.M. Wang, W.R. Li, and H.F. Zhang, Effects of Al addition on the microstructures and properties of MoNbTaTiV refractory high entropy alloy, Mater. Sci. Eng. A, 784(2020), art. No. 139275. doi: 10.1016/j.msea.2020.139275
    [56]
    Y.Y. Liu, Z. Chen, J.C. Shi, Z.Y. Wang, and J.Y. Zhang, The effect of Al content on microstructures and comprehensive properties in AlxCoCrCuFeNi high entropy alloys, Vacuum, 161(2019), p. 143. doi: 10.1016/j.vacuum.2018.12.009
    [57]
    Y. Cui, J.Q. Shen, S.M. Manladan, K.P. Geng, and S.S. Hu, Wear resistance of FeCoCrNiMnAlx high-entropy alloy coatings at high temperature, Appl. Surf. Sci., 512(2020), art. No. 145736. doi: 10.1016/j.apsusc.2020.145736
    [58]
    S.A. Uporov, R.E. Ryltsev, V.A. Bykov, S.K. Estemirova, and D.A. Zamyatin, Microstructure, phase formation and physical properties of AlCoCrFeNiMn high-entropy alloy, J. Alloys Compd., 820(2020), art. No. 153228. doi: 10.1016/j.jallcom.2019.153228
    [59]
    J. Lu, Y. Chen, H. Zhang, L.M. He, R.D. Mu, Z.Y. Shen, X.F. Zhao, and F.W. Guo, Y/Hf-doped Al0.7CoCrFeNi high-entropy alloy with ultra oxidation and spallation resistance at 1200°C, Corros. Sci., 174(2020), art. No. 108803. doi: 10.1016/j.corsci.2020.108803
    [60]
    J. Lu, Y. Chen, H. Zhang, L. Li, L.M. Fu, X.F. Zhao, F.W. Guo, and P. Xiao, Effect of Al content on the oxidation behavior of Y/Hf-doped AlCoCrFeNi high-entropy alloy, Corros. Sci., 170(2020), art. No. 108691. doi: 10.1016/j.corsci.2020.108691
    [61]
    Z.Y. Rao, X. Wang, Q.J. Wang, T. Liu, X.H. Chen, L. Wang, and X.D. Hui, Microstructure, mechanical properties, and oxidation behavior of AlxCr0.4CuFe0.4MnNi high entropy alloys, Adv. Eng. Mater., 19(2017), No. 5, art. No. 1600726. doi: 10.1002/adem.201600726
    [62]
    Y.C. Cai, L.S. Zhu, Y. Cui, K.P. Geng, S.M. Manladan, and Z. Luo, High-temperature oxidation behavior of FeCoCrNiAlx high-entropy alloy coatings, Mater. Res. Express, 6(2019), No. 12, art. No. 126552. doi: 10.1088/2053-1591/ab562d
    [63]
    M.V. Karpets, V.F. Gorban, O.A. Rokitska, M.O. Krapivka, E.S. Makarenko, and A.V. Samelyuk, Features of high-temperature oxidation of high-entropy AlCrFe3CoNiCu alloy, Powder Metall. Met. Ceram., 57(2018), No. 3-4, p. 221. doi: 10.1007/s11106-018-9972-2
    [64]
    S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys., 109(2011), No. 10, art. No. 103505. doi: 10.1063/1.3587228
    [65]
    T.M. Butler and M.L. Weaver, Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys, J. Alloys Compd., 674(2016), p. 229. doi: 10.1016/j.jallcom.2016.02.257
    [66]
    Y.Y. Liu, Z. Chen, Y.Z. Chen, J.C. Shi, Z.Y. Wang, S. Wang, and F. Liu, Effect of Al content on high temperature oxidation resistance of AlxCoCrCuFeNi high entropy alloys (x=0, 0.5, 1, 1.5, 2), Vacuum, 169(2019), art. No. 108837. doi: 10.1016/j.vacuum.2019.108837
    [67]
    N.Y. Bao, J. Zuo, Z.Y. Du, M.L. Yang, G. Jiang, and L. Zhang, Computational characterization of the structural and mechanical properties of AlxCoCrFeNiTi1x high entropy alloys, Mater. Res. Express, 6(2019), No. 9, art. No. 096519. doi: 10.1088/2053-1591/ab2b77
    [68]
    A. Mohanty, J.K. Sampreeth, O. Bembalge, J.Y. Hascoet, S. Marya, R.J. Immanuel, and S.K. Panigrahi, High temperature oxidation study of direct laser deposited AlXCoCrFeNi (X=0.3,0.7) high entropy alloys, Surf. Coat. Technol., 380(2019), art. No. 125028. doi: 10.1016/j.surfcoat.2019.125028
    [69]
    F.X. Ye, Z.P. Jiao, S. Yan, L. Guo, L.Z. Feng, and J.X. Yu, Microbeam plasma arc remanufacturing: Effects of Al on microstructure, wear resistance, corrosion resistance and high temperature oxidation resistance of AlxCoCrFeMnNi high-entropy alloy cladding layer, Vacuum, 174(2020), art. No. 109178. doi: 10.1016/j.vacuum.2020.109178
    [70]
    L.C. Li, M.X. Li, M. Liu, B.Y. Sun, C. Wang, J.T. Huo, W.H. Wang, and Y.H. Liu, Enhanced oxidation resistance of MoTaTiCrAl high entropy alloys by removal of Al, Sci. China Mater., 64(2021), No. 1, p. 223. doi: 10.1007/s40843-020-1332-2
    [71]
    A. Erdogan, K.M. Doleker, and S. Zeytin, Effect of Al and Ti on high-temperature oxidation behavior of CoCrFeNi-based high-entropy alloys, JOM, 71(2019), No. 10, p. 3499. doi: 10.1007/s11837-019-03679-2
    [72]
    G.S. Ham, Y.K. Kim, Y.S. Na, and K.A. Lee, Effect of Ti addition on the microstructure and high-temperature oxidation property of AlCoCrFeNi high-entropy alloy, Met. Mater. Int., 27(2021), No. 1, p. 156. doi: 10.1007/s12540-020-00708-7
    [73]
    Q.D. Qin, J.B. Qu, Y.E. Hu, Y.J. Wu, and X.D. Su, Microstructural characterization and oxidation resistance of multicomponent equiatomic CoCrCuFeNi–TiO high-entropy alloy, Int. J. Miner. Metall. Mater., 25(2018), No. 11, p. 1286. doi: 10.1007/s12613-018-1681-9
    [74]
    J. Dąbrowa, G. Cieślak, M. Stygar, K. Mroczka, K. Berent, T. Kulik, and M. Danielewski, Influence of Cu content on high temperature oxidation behavior of AlCoCrCuxFeNi high entropy alloys (x=0; 0.5; 1), Intermetallics, 84(2017), p. 52. doi: 10.1016/j.intermet.2016.12.015
    [75]
    F. Chang, B.J. Cai, C. Zhang, B. Huang, S. Li, and P.Q. Dai, Thermal stability and oxidation resistance of FeCrxCoNiB high-entropy alloys coatings by laser cladding, Surf. Coat. Technol., 359(2019), p. 132. doi: 10.1016/j.surfcoat.2018.12.072
    [76]
    Y.J. Chang and A.C. Yeh, The evolution of microstructures and high temperature properties of AlxCo1.5CrFeNi1.5Tiy high entropy alloys, J. Alloys Compd., 653(2015), p. 379. doi: 10.1016/j.jallcom.2015.09.042
    [77]
    W. Kai, C.C. Li, F.P. Cheng, K.P. Chu, R.T. Huang, L.W. Tsay, and J.J. Kai, Air-oxidation of FeCoNiCr-based quinary high-entropy alloys at 700–900°C, Corros. Sci., 121(2017), p. 116. doi: 10.1016/j.corsci.2017.02.008
    [78]
    G. Laplanche, U.F. Volkert, G. Eggeler, and E.P. George, Oxidation behavior of the CrMnFeCoNi high-entropy alloy, Oxid. Met., 85(2016), No. 5-6, p. 629. doi: 10.1007/s11085-016-9616-1
    [79]
    B. Gorr, F. Mueller, H.J. Christ, T. Mueller, H. Chen, A. Kauffmann, and M. Heilmaier, High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb–20Mo–20Cr–20Ti–20Al with and without Si addition, J. Alloys Compd., 688(2016), p. 468.
    [80]
    S. Shajahan, A. Kumar, M. Chopkar, and A. Basu, Oxidation study of CoCrCuFeNiSix high entropy alloys, Mater. Res. Express, 7(2020), No. 1, art. No. 016532. doi: 10.1088/2053-1591/ab640a
    [81]
    F. Müller, B. Gorr, H.J. Christ, H. Chen, A. Kauffmann, and M. Heilmaier, Effect of microalloying with silicon on high temperature oxidation resistance of novel refractory high-entropy alloy Ta–Mo–Cr–Ti–Al, Mater. High Temp., 35(2018), No. 1-3, p. 168. doi: 10.1080/09603409.2017.1389115
    [82]
    S. Wang, Y. Wu, C.S. Ni, and Y. Niu, The effect of Si additions on the high temperature oxidation of a ternary Ni–10Cr–4Al alloy in 1 atm O2 at 1100°C, Corros. Sci., 51(2009), No. 3, p. 511. doi: 10.1016/j.corsci.2008.10.023
    [83]
    J.J. Yang, C.M. Kuo, P.T. Lin, H.C. Liu, C.Y. Huang, H.W. Yen, and C.W. Tsai, Improvement in oxidation behavior of Al0.2Co1.5CrFeNi1.5Ti0.3 high-entropy superalloys by minor Nb addition, J. Alloys Compd., 825(2020), art. No. 153983. doi: 10.1016/j.jallcom.2020.153983
    [84]
    S. Sheikh, M.K. Bijaksana, A. Motallebzadeh, S. Shafeie, A. Lozinko, L. Gan, T.K. Tsao, U. Klement, D. Canadinc, H. Murakami, and S. Guo, Accelerated oxidation in ductile refractory high-entropy alloys, Intermetallics, 97(2018), p. 58. doi: 10.1016/j.intermet.2018.04.001
    [85]
    Y.K. Cao, Y. Liu, B. Liu, W.D. Zhang, J.W. Wang, and M. Du, Effects of Al and Mo on high temperature oxidation behavior of refractory high entropy alloys, Trans. Nonferrous Met. Soc. China, 29(2019), No. 7, p. 1476. doi: 10.1016/S1003-6326(19)65054-5
    [86]
    O.A. Waseem and H.J. Ryu, Combinatorial synthesis and analysis of AlxTayVz–Cr20Mo20Nb20 Ti20Zr10 and Al10CrMoxNbTiZr10 refractory high-entropy alloys: Oxidation behavior, J. Alloys Compd., 828(2020), art. No. 154427. doi: 10.1016/j.jallcom.2020.154427
    [87]
    B. Gorr, F. Müller, S. Schellert, H.J. Christ, H. Chen, A. Kauffmann, and M. Heilmaier, A new strategy to intrinsically protect refractory metal based alloys at ultra high temperatures, Corros. Sci., 166(2020), art. No. 108475. doi: 10.1016/j.corsci.2020.108475
    [88]
    F. Müller, B. Gorr, H.J. Christ, J. Müller, B. Butz, H. Chen, A. Kauffmann, and M. Heilmaier, On the oxidation mechanism of refractory high entropy alloys, Corros. Sci., 159(2019), art. No. 108161. doi: 10.1016/j.corsci.2019.108161
    [89]
    K.C. Lo, Y.J. Chang, H. Murakami, J.W. Yeh, and A.C. Yeh, An oxidation resistant refractory high entropy alloy protected by CrTaO4-based oxide, Sci. Rep., 9(2019), art. No. 7266. doi: 10.1038/s41598-019-43819-x
    [90]
    Y.X. Guo, H.L. Wang, and Q.B. Liu, Microstructure evolution and strengthening mechanism of laser-cladding MoFexCrTiWAlNby refractory high-entropy alloy coatings, J. Alloys Compd., 834(2020), art. No. 155147. doi: 10.1016/j.jallcom.2020.155147
    [91]
    L.L. Hou, J.T. Hui, Y.H. Yao, J. Chen, and J.N. Liu, Effects of boron content on microstructure and mechanical properties of AlFeCoNiBx high entropy alloy prepared by vacuum arc melting, Vacuum, 164(2019), p. 212. doi: 10.1016/j.vacuum.2019.03.019
    [92]
    V. Shivam, Y. Shadangi, J. Basu, and N.K. Mukhopadhyay, Evolution of phases, hardness and magnetic properties of AlCoCrFeNi high entropy alloy processed by mechanical alloying, J. Alloys Compd., 832(2020), art. No. 154826. doi: 10.1016/j.jallcom.2020.154826
    [93]
    D. Oleszak, A. Antolak-Dudka, and T. Kulik, High entropy multicomponent WMoNbZrV alloy processed by mechanical alloying, Mater. Lett., 232(2018), p. 160. doi: 10.1016/j.matlet.2018.08.060
    [94]
    H. Gedda, A. Kaplan, and J. Powell, Melt-solid interactions in laser cladding and laser casting, Metall. Mater. Trans. B, 36(2005), No. 5, p. 683. doi: 10.1007/s11663-005-0059-3
    [95]
    C.H. Lai, S.J. Lin, J.W. Yeh, and S.Y. Chang, Preparation and characterization of AlCrTaTiZr multi-element nitride coatings, Surf. Coat. Technol., 201(2006), No. 6, p. 3275. doi: 10.1016/j.surfcoat.2006.06.048
    [96]
    Y.Z. Shi, B. Yang, P.D. Rack, S.F. Guo, P.K. Liaw, and Y. Zhao, High-throughput synthesis and corrosion behavior of sputter-deposited nanocrystalline Alx(CoCrFeNi)100−x combinatorial high-entropy alloys, Mater. Des., 195(2020), art. No. 109018. doi: 10.1016/j.matdes.2020.109018
    [97]
    S. Shukla, T.H. Wang, M. Frank, P. Agrawal, S. Sinha, R.A. Mirshams, and R.S. Mishra, Friction stir gradient alloying: A novel solid-state high throughput screening technique for high entropy alloys, Mater. Today Commun., 23(2020), art. No. 100869. doi: 10.1016/j.mtcomm.2019.100869
    [98]
    Y.Q. Xu, Y.Q. Bu, J.B. Liu, and H.T. Wang, In-situ high throughput synthesis of high-entropy alloys, Scripta Mater., 160(2019), p. 44. doi: 10.1016/j.scriptamat.2018.09.040
    [99]
    M. Li, J. Gazquez, A. Borisevich, R. Mishra, and K.M. Flores, Evaluation of microstructure and mechanical property variations in AlxCoCrFeNi high entropy alloys produced by a high-throughput laser deposition method, Intermetallics, 95(2018), p. 110. doi: 10.1016/j.intermet.2018.01.021
    [100]
    X.Y. Gao and Y.Z. Lu, Laser 3D printing of CoCrFeMnNi high-entropy alloy, Mater. Lett., 236(2019), p. 77. doi: 10.1016/j.matlet.2018.10.084
    [101]
    Y. Hong, M.B. Kivy, and M.A. Zaeem, Competition between formation of Al2O3 and Cr2O3 in oxidation of Al0.3CoCrCuFeNi high entropy alloy: A first-principles study, Scripta Mater., 168(2019), p. 139. doi: 10.1016/j.scriptamat.2019.04.041
    [102]
    I. Barin, Thermochemical Data for Pure Substances, 3rd ed., VCH Verlagsgesellschaft mbH, Weinheim, 1995.
    [103]
    W. Kai, C.C. Li, F.P. Cheng, K.P. Chu, R.T. Huang, L.W. Tsay, and J.J. Kai, The oxidation behavior of an equimolar FeCoNiCrMn high-entropy alloy at 950°C in various oxygen-containing atmospheres, Corros. Sci., 108(2016), p. 209. doi: 10.1016/j.corsci.2016.03.020
    [104]
    R.E. Lobnig, H.P. Schmidt, K. Hennesen, and H.J. Grabke, Diffusion of cations in chromia layers grown on iron-base alloys, Oxid. Met., 37(1992), No. 1-2, p. 81. doi: 10.1007/BF00665632
    [105]
    R.X. Wang, Y. Tang, S. Li, Y.L. Ai, Y.Y. Li, B. Xiao, L.A. Zhu, X.Y. Liu, and S.X. Bai, Effect of lattice distortion on the diffusion behavior of high-entropy alloys, J. Alloys Compd., 825(2020), art. No. 154099. doi: 10.1016/j.jallcom.2020.154099
    [106]
    Y. Tong, S.J. Zhao, H.B. Bei, T. Egami, Y.W. Zhang, and F.X. Zhang, Severe local lattice distortion in Zr- and/or Hf-containing refractory multi-principal element alloys, Acta Mater., 183(2020), p. 172. doi: 10.1016/j.actamat.2019.11.026
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(7540) PDF Downloads(189) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return