Panpan Wang, Haitao Jiang, Yujiao Wang, Yun Zhang, Shiwei Tian, Yefei Zhang,  and Zhiming Cao, Role of trace additions of Ca and Sn in improving the corrosion resistance of Mg–3Al–1Zn alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1559-1569. https://doi.org/10.1007/s12613-021-2268-4
Cite this article as:
Panpan Wang, Haitao Jiang, Yujiao Wang, Yun Zhang, Shiwei Tian, Yefei Zhang,  and Zhiming Cao, Role of trace additions of Ca and Sn in improving the corrosion resistance of Mg–3Al–1Zn alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1559-1569. https://doi.org/10.1007/s12613-021-2268-4
Research Article

Role of trace additions of Ca and Sn in improving the corrosion resistance of Mg–3Al–1Zn alloy

+ Author Affiliations
  • Corresponding author:

    Haitao Jiang    E-mail: jianght@ustb.edu.cn

  • Received: 9 December 2020Revised: 9 February 2021Accepted: 17 February 2021Available online: 18 February 2021
  • The limited wide applicability of commercial Mg alloys is mainly attributed to the poor corrosion resistance. Addition of alloying elements is the simplest and effective method to improve the corrosion properties. Based on the low-cost alloy composition design, the corrosion behavior of commercial Mg–3Al–1Zn (AZ31) alloy bearing minor Ca or Sn element was characterized by scanning Kelvin probe force microscopy, hydrogen evolution, electrochemical measurements, and corrosion morphology analysis. Results revealed that the potential difference of Al2Ca/α-Mg and Mg2Sn/α-Mg was (230 ± 19) mV and (80 ± 6) mV, respectively, much lower than that of Al8Mn5/α-Mg (430 ± 31) mV in AZ31 alloy, which illustrated that AZ31–0.2Sn alloy performed the best corrosion resistance, followed by AZ31–0.2Ca, while AZ31 alloy exhibited the worst corrosion resistance. Moreover, Sn dissolved into matrix obviously increased the potential of α-Mg and participated in the formation of dense SnO2 film at the interface of matrix, while Ca element was enriched in the corrosion product layer, resulting in the corrosion product layer of AZ31–0.2Ca/Sn alloys more compact, stable, and protective than AZ31 alloy. Therefore, AZ31 alloy bearing 0.2wt% Ca or Sn element exhibited excellent balanced properties, which is potential to be applied in commercial more comprehensively.
  • loading
  • [1]
    Z. Zhang, J.H. Zhang, J. Wang, Z.H. Li, J.S. Xie, S.J. Liu, K. Guan, and R.Z. Wu, Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30. doi: 10.1007/s12613-020-2190-1
    [2]
    A.V. Koltygin, V.E. Bazhenov, R.S. Khasenova, A.A. Komissarov, A.I. Bazlov, and V.A. Bautin, Effects of small additions of Zn on the microstructure, mechanical properties and corrosion resistance of WE43B Mg alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 858. doi: 10.1007/s12613-019-1801-1
    [3]
    Z.Y. Ding, L.Y. Cui, R.C. Zeng, Y.B. Zhao, S.K. Guan, D.K. Xu, and C.G. Lin, Exfoliation corrosion of extruded Mg–Li–Ca alloy, J. Mater. Sci. Technol., 34(2018), No. 9, p. 1550. doi: 10.1016/j.jmst.2018.05.014
    [4]
    R. Arrabal, B. Mingo, A. Pardo, E. Matykina, M. Mohedano, M.C. Merino, A. Rivas, and A. Maroto, Role of alloyed Nd in the microstructure and atmospheric corrosion of as-cast magnesium alloy AZ91, Corros. Sci., 97(2015), p. 38. doi: 10.1016/j.corsci.2015.04.004
    [5]
    G.M. Zhu, L.Y. Wang, J. Wang, J. Wang, J.S. Park, and X.Q. Zeng, Highly deformable Mg–Al–Ca alloy with Al2Ca precipitates, Acta Mater., 200(2020), p. 236. doi: 10.1016/j.actamat.2020.09.006
    [6]
    S. Sanyal, M. Paliwal, T.K. Bandyopadhyay, and S. Mandal, Evolution of microstructure, phases and mechanical properties in lean as-cast Mg–Al–Ca–Mn alloys under the influence of a wide range of Ca/Al ratio, Mater. Sci. Eng. A, 800(2021), art. No. 140322. doi: 10.1016/j.msea.2020.140322
    [7]
    Y.Z. Ma, C.L. Yang, Y.J. Liu, F.S. Yuan, S.S. Liang, H.X. Li, and J.S. Zhang, Microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg–xZn–0.2Ca alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1274. doi: 10.1007/s12613-019-1860-3
    [8]
    H.A. Elamami, A. Incesu, K. Korgiopoulos, M. Pekguleryuz, and A. Gungor, Phase selection and mechanical properties of permanent-mold cast Mg–Al–Ca–Mn alloys and the role of Ca/Al ratio, J. Alloys Compd., 764(2018), p. 216. doi: 10.1016/j.jallcom.2018.05.309
    [9]
    B. Wang, X.H. Chen, F.S. Pan, and J.J. Mao, Effects of Sn addition on microstructure and mechanical properties of Mg–Zn–Al alloys, Prog. Nat. Sci. Mater. Int., 27(2017), No. 6, p. 695. doi: 10.1016/j.pnsc.2017.11.002
    [10]
    S.W. Bae, S.H. Kim, J.U. Lee, W.K. Jo, W.H. Hong, W. Kim, and S.H. Park, Improvement of mechanical properties and reduction of yield asymmetry of extruded Mg–Al–Zn alloy through Sn addition, J. Alloys Compd., 766(2018), p. 748. doi: 10.1016/j.jallcom.2018.07.028
    [11]
    X. Chen, D.F. Zhang, J.Y. Xu, J.K. Feng, Y. Zhao, B. Jiang, and F.S. Pan, Improvement of mechanical properties of hot extruded and age treated Mg–Zn–Mn–Ca alloy through Sn addition, J. Alloys Compd., 850(2021), art. No. 156711. doi: 10.1016/j.jallcom.2020.156711
    [12]
    Z. Ahmad, A. Ul-Hamid, and B.J. Abdul-Aleem, The corrosion behavior of scandium alloyed Al 5052 in neutral sodium chloride solution, Corros. Sci., 43(2001), No. 7, p. 1227. doi: 10.1016/S0010-938X(00)00147-5
    [13]
    L.Y. Cui, S.D. Gao, P.P. Li, R.C. Zeng, F. Zhang, S.Q. Li, and E.H. Han, Corrosion resistance of a self-healing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31, Corros. Sci., 118(2017), p. 84. doi: 10.1016/j.corsci.2017.01.025
    [14]
    Y.H. Liu, W.L. Cheng, Y. Zhang, X.F. Niu, H.X. Wang, and L.F. Wang, Microstructure, tensile properties, and corrosion resistance of extruded Mg–1Bi–1Zn alloy: The influence of minor Ca addition, J. Alloys Compd., 815(2020), art. No. 152414. doi: 10.1016/j.jallcom.2019.152414
    [15]
    C. He, B.H. Luo, Y.Y. Zheng, Y. Yin, Z.H. Bai, and Z.W. Ren, Effect of Sn on microstructure and corrosion behaviors of Al–Mg–Si alloys, Mater. Charact., 156(2019), art. No. 109836. doi: 10.1016/j.matchar.2019.109836
    [16]
    Y.M. Jin, C. Blawert, H. Yang, B. Wiese, F. Feyerabend, J. Bohlen, D. Mei, M. Deng, M.S. Campos, N. Scharnagl, K. Strecker, J.L. Bode, C. Vogt, and R. Willumeit-Römer, Microstructure-corrosion behaviour relationship of micro-alloyed Mg–0.5Zn alloy with the addition of Ca, Sr, Ag, In and Cu, Mater. Des., 195(2020), art. No. 108980. doi: 10.1016/j.matdes.2020.108980
    [17]
    W.J. Zhang, M.H. Li, Q. Chen, W.Y. Hu, W.M. Zhang, and W. Xin, Effects of Sr and Sn on microstructure and corrosion resistance of Mg–Zr–Ca magnesium alloy for biomedical applications, Mater. Des., 39(2012), p. 379. doi: 10.1016/j.matdes.2012.03.006
    [18]
    S.M. Baek, S.Y. Lee, J.C. Kim, J. Kwon, H. Jung, S. Lee, K.S. Lee, and S.S. Park, Role of trace additions of Mn and Y in improving the corrosion resistance of Mg–3Al–1Zn alloy, Corros. Sci., 178(2021), art. No. 108998. doi: 10.1016/j.corsci.2020.108998
    [19]
    L. Yang, Y. Huang, F. Feyerabend, R. Willumeit, C. Mendis, K.U. Kainer, and N. Hort, Microstructure, mechanical and corrosion properties of Mg–Dy–Gd–Zr alloys for medical applications, Acta Biomater., 9(2013), No. 10, p. 8499. doi: 10.1016/j.actbio.2013.03.017
    [20]
    H.Y. Ha, J.Y. Kang, S.G. Kim, B. Kim, S.S. Park, C.D. Yim, and B.S. You, Influences of metallurgical factors on the corrosion behaviour of extruded binary Mg–Sn alloys, Corros. Sci., 82(2014), p. 369. doi: 10.1016/j.corsci.2014.01.035
    [21]
    S. Pawar, X. Zhou, T. Hashimoto, G.E. Thompson, G. Scamans, and Z. Fan, Investigation of the microstructure and the influence of iron on the formation of Al8Mn5 particles in twin roll cast AZ31 magnesium alloy, J. Alloys Compd., 628(2015), p. 195. doi: 10.1016/j.jallcom.2014.12.028
    [22]
    C. Zhang, L. Wu, G.S. Huang, Y. Huang, B. Jiang, A. Atrens, and F.S. Pan, Effect of microalloyed Ca on the microstructure and corrosion behavior of extruded Mg alloy AZ31, J. Alloys Compd., 823(2020), art. No. 153844. doi: 10.1016/j.jallcom.2020.153844
    [23]
    Y. Liu, W.L. Cheng, X.J. Gu, Y.H. Liu, Z.Q. Cui, L.F. Wang, and H.X. Wang, Tailoring the microstructural characteristic and improving the corrosion resistance of extruded dilute Mg–0.5Bi–0.5Sn alloy by microalloying with Mn, J. Magnes. Alloys, 9(2021), No. 5, p. 1656. doi: 10.1016/j.jma.2020.07.010
    [24]
    Z. Hu, Z. Yin, Z. Yin, K. Wang, Q.D. Liu, P.F. Sun, H. Yan, H.G. Song, C. Luo, H.Y. Guan, and C. Luc, Corrosion behavior characterization of as extruded Mg–8Li–3Al alloy with minor alloying elements (Gd, Sn and Cu) by scanning Kelvin probe force microscopy, Corros. Sci., 176(2020), art. No. 108923. doi: 10.1016/j.corsci.2020.108923
    [25]
    Y.J. Wang, Y. Zhang, P.P. Wang, D. Zhang, B.W. Yu, Z. Xu, and H.T. Jiang, Effect of LPSO phases and aged-precipitations on corrosion behavior of as-forged Mg–6Gd–2Y–1Zn–0.3Zr alloy, J. Mater. Res. Technol., 9(2020), No. 4, p. 7087. doi: 10.1016/j.jmrt.2020.05.048
    [26]
    W.J. Liu, F.H. Cao, A.N. Chen, L.R. Chang, J.Q. Zhang, and C.N. Cao, Corrosion behaviour of AM60 magnesium alloys containing Ce or La under thin electrolyte layers. Part 1: Microstructural characterization and electrochemical behaviour, Corros. Sci., 52(2010), No. 2, p. 627. doi: 10.1016/j.corsci.2009.10.031
    [27]
    Y.S. Jeong and W.J. Kim, Enhancement of mechanical properties and corrosion resistance of Mg–Ca alloys through microstructural refinement by indirect extrusion, Corros. Sci., 82(2014), p. 392. doi: 10.1016/j.corsci.2014.01.041
    [28]
    Y.J. Zhang, C.W. Yan, F.H. Wang, and W.F. Li, Electrochemical behavior of anodized Mg alloy AZ91D in chloride containing aqueous solution, Corros. Sci., 47(2005), No. 11, p. 2816. doi: 10.1016/j.corsci.2005.01.010
    [29]
    S.Q. Yin, W.C. Duan, W.H. Liu, L. Wu, J.X. Bao, J.M. Yu, L. Li, Z. Zhao, J.Z. Cui, and Z.Q. Zhang, Improving the corrosion resistance of MgZn1.2GdxZr0.18 (x = 0, 0.8, 1.4, 2.0) alloys via Gd additions, Corros. Sci., 177(2020), art. No. 108962. doi: 10.1016/j.corsci.2020.108962
    [30]
    J. Liu, L.X. Yang, C.Y. Zhang, B. Zhang, T. Zhang, Y. Li, K.M. Wu, and F.H. Wang, Role of the LPSO structure in the improvement of corrosion resistance of Mg–Gd–Zn–Zr alloys, J. Alloys Compd., 782(2019), p. 648. doi: 10.1016/j.jallcom.2018.12.233
    [31]
    R.C. Zeng, L. Sun, Y.F. Zheng, H.Z. Cui, and E.H. Han, Corrosion and characterisation of dual phase Mg–Li–Ca alloy in Hank's solution: The influence of microstructural features, Corros. Sci., 79(2014), p. 69. doi: 10.1016/j.corsci.2013.10.028
    [32]
    D. Li, Electrochemical Principle, 3rd ed., Beijing University of Aeronautics and Astronautics Press, Beijing, 2008.
    [33]
    X.B. Liu, D.Y. Shan, Y.W. Song, R.S. Chen, and E.H. Han, Influences of the quantity of Mg2Sn phase on the corrosion behavior of Mg–7Sn magnesium alloy, Electrochim. Acta, 56(2011), No. 5, p. 2582. doi: 10.1016/j.electacta.2010.12.030
    [34]
    W.Y. Jiang, J.F. Wang, W.K. Zhao, Q.S. Liu, D.M. Jiang, and S.F. Guo, Effect of Sn addition on the mechanical properties and bio-corrosion behavior of cytocompatible Mg–4Zn based alloys, J. Magnes. Alloys, 7(2019), No. 1, p. 15. doi: 10.1016/j.jma.2019.02.002
    [35]
    P. Metalnikov, G. Ben-Hamu, D. Eliezer, and K.S. Shin, Role of Sn in microstructure and corrosion behavior of new wrought Mg–5Al alloy, J. Alloys Compd., 777(2019), p. 835. doi: 10.1016/j.jallcom.2018.11.003
    [36]
    H.Y. Ha, J.Y. Kang, J. Yang, C.D. Yim, and B.S. You, Role of Sn in corrosion and passive behavior of extruded Mg–5 wt%Sn alloy, Corros. Sci., 102(2016), p. 355. doi: 10.1016/j.corsci.2015.10.028
    [37]
    J.Y. Zhang, B. Jiang, Q.S. Yang, D. Huang, A.T. Tang, F.S. Pan, and Q.Y. Han, Role of second phases on the corrosion resistance of Mg–Nd–Zr alloys, J. Alloys Compd., 849(2020), art. No. 156619. doi: 10.1016/j.jallcom.2020.156619
    [38]
    X. Peng, S.H. Xu, D.H. Ding, G.L. Liao, G.H. Wu, W.C. Liu, and W.J. Ding, Microstructural evolution, mechanical properties and corrosion behavior of as-cast Mg–5Li–3Al–2Zn alloy with different Sn and Y addition, J. Mater. Sci. Technol., 72(2021), p. 16. doi: 10.1016/j.jmst.2020.07.029
    [39]
    S. Moon and Y. Nam, Anodic oxidation of Mg–Sn alloys in alkaline solutions, Corros. Sci., 65(2012), p. 494. doi: 10.1016/j.corsci.2012.08.050
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(5)

    Share Article

    Article Metrics

    Article Views(4135) PDF Downloads(65) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return