Cite this article as: |
Pian Zhang, Yun-hao Wu, Hao-ran Sun, Jia-qi Zhao, Zhi-ming Cheng, and Xiao-hong Kang, MnO2/carbon nanocomposite based on silkworm excrement for high-performance supercapacitors, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1735-1744. https://doi.org/10.1007/s12613-021-2272-8 |
Xiao-hong Kang E-mail: xhkang@bjtu.edu.cn
MnO2/biomass carbon nanocomposite was synthesized by a facile hydrothermal reaction. Silkworm excrement acted as a carbon precursor, which was activated by ZnCl2 and FeCl3 combining chemical agents under Ar atmosphere. Thin and flower-like MnO2 nanowires were in-situ anchored on the surface of the biomass carbon. The biomass carbon not only offered high conductivity and good structural stability but also relieved the large volume expansion during the charge/discharge process. The obtained MnO2/biomass carbon nanocomposite electrode exhibited a high specific capacitance (238 F·g−1 at 0.5 A·g−1) and a superior cycling stability with only 7% degradation after 2000 cycles. The observed good electrochemical performance is accredited to the materials’ high specific surface area, multilevel hierarchical structure, and good conductivity. This study proposes a promising method that utilizes biological waste and broadens MnO2-based electrode material application for next-generation energy storage and conversion devices.
[1] |
Y.N. Gong, D.L. Li, C.Z. Luo, Q. Fu, and C.X. Pan, Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors, Green Chem., 19(2017), No. 17, p. 4132. doi: 10.1039/C7GC01681F
|
[2] |
C.Y. Li, W.Z. Wu, S.S. Zhang, L. He, Y.S. Zhu, J. Wang, L.J. Fu, Y.H. Chen, Y.P. Wu, and W. Huang, A high-voltage aqueous lithium ion capacitor with high energy density from an alkaline-neutral electrolyte, J. Mater. Chem. A, 7(2019), No. 8, p. 4110. doi: 10.1039/C8TA11735G
|
[3] |
Z.X. Chang, X. Ju, P. Guo, X.H. Zhu, C.Y. Liao, Y. Zong, X.H. Li, and X.L. Zheng, Enhanced performance of supercapacitor electrode materials based on hierarchical hollow flowerlike HRGOs/Ni-doped MoS2 composite, J. Alloys Compd., 824(2020), art. No. 153873. doi: 10.1016/j.jallcom.2020.153873
|
[4] |
D. Wu, X.B. Xie, Y.P. Zhang, D.M. Zhang, W. Du, X.Y. Zhang, and B. Wang, MnO2/carbon composites for supercapacitor: Synthesis and electrochemical performance, Front. Mater., 7(2020), art. No. 2. doi: 10.3389/fmats.2020.00002
|
[5] |
K. Wang, N. Zhao, S.W. Lei, R. Yan, X.D. Tian, J.Z. Wang, Y. Song, D.F. Xu, Q.G. Guo, and L. Liu, Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors, Electrochim. Acta, 166(2015), p. 1. doi: 10.1016/j.electacta.2015.03.048
|
[6] |
F.Q. Guo, X.C. Jiang, X.P. Jia, S. Liang, L. Qian, and Z.H. Rao, Synthesis of biomass carbon electrode materials by bimetallic activation for the application in supercapacitors, J. Electroanal. Chem., 844(2019), p. 105. doi: 10.1016/j.jelechem.2019.05.004
|
[7] |
A.A. Mohammed, C. Chen, and Z.H. Zhu, Green and high performance all-solid-state supercapacitors based on MnO2/Faidherbia albida fruit shell derived carbon sphere electrodes, J. Power Sources, 417(2019), p. 1. doi: 10.1016/j.jpowsour.2019.02.003
|
[8] |
J. Fang, D. Guo, C.X. Kang, S.Y. Wan, S.X. Li, L.K. Fu, G. Liu, and Q.M. Liu, Enhanced hetero-elements doping content in biomass waste-derived carbon for high performance supercapacitor, Int. J. Energy Res., 43(2019), No. 14, p. 8811.
|
[9] |
Y.F. Zhao, W. Ran, J. He, Y.Z. Huang, Z.F. Liu, W. Liu, Y.F. Tang, L. Zhang, D.W. Gao, and F.M. Gao, High-performance asymmetric supercapacitors based on multilayer MnO2/graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability, Small, 11(2015), No. 11, p. 1310. doi: 10.1002/smll.201401922
|
[10] |
F. Grote, R.S. Kühnel, A. Balducci, and Y. Lei, Template assisted fabrication of free-standing MnO2 nanotube and nanowire arrays and their application in supercapacitors, Appl. Phys. Lett., 104(2014), No. 5, art. No. 053904. doi: 10.1063/1.4864285
|
[11] |
Z.N. Yu, B. Duong, D. Abbitt, and J. Thomas, Highly ordered MnO2 nanopillars for enhanced supercapacitor performance, Adv. Mater., 25(2013), No. 24, p. 3302. doi: 10.1002/adma.201300572
|
[12] |
Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, and L.C. Qin, Graphene and nanostructured MnO2 composite electrodes for supercapacitors, Carbon, 49(2011), No. 9, p. 2917. doi: 10.1016/j.carbon.2011.02.068
|
[13] |
Y.X. Chen, C. Jing, X. Fu, M. Shen, T. Cao, W.C. Huo, X.Y. Liu, H.C. Yao, Y.X. Zhang, and K.X. Yao, In-situ fabricating MnO2 and its derived FeOOH nanostructures on mesoporous carbon towards high-performance asymmetric supercapacitor, Appl. Surf. Sci., 503(2020), art. No. 144123. doi: 10.1016/j.apsusc.2019.144123
|
[14] |
M.X. Liu, L.H. Gan, W. Xiong, Z.J. Xu, D.Z. Zhu, and L.W. Chen, Development of MnO2/porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrodes, J. Mater. Chem. A, 2(2014), No. 8, p. 2555. doi: 10.1039/C3TA14445C
|
[15] |
X.J. Ma, P. Kolla, Y. Zhao, A.L. Smirnova, and H. Fong, Electrospun lignin-derived carbon nanofiber mats surface-decorated with MnO2 nanowhiskers as binder-free supercapacitor electrodes with high performance, J. Power Sources, 325(2016), p. 541. doi: 10.1016/j.jpowsour.2016.06.073
|
[16] |
P. Xu, B.Q. Wei, Z.Y. Cao, J. Zheng, K. Gong, F.X. Li, J.Y. Yu, Q.W. Li, W.B. Lu, J.H. Byun, B.S. Kim, Y.S. Yan, and T.W. Chou, Stretchable wire-shaped asymmetric supercapacitors based on pristine and MnO2 coated carbon nanotube fibers, ACS Nano, 9(2015), No. 6, p. 6088. doi: 10.1021/acsnano.5b01244
|
[17] |
N. Yu, H. Yin, W. Zhang, Y. Liu, Z.Y. Tang, and M.Q. Zhu, High-performance fiber-shaped all-solid-state asymmetric supercapacitors based on ultrathin MnO2 nanosheet/carbon fiber cathodes for wearable electronics, Adv. Energy Mater., 6(2016), No. 2, art. No. 1501458. doi: 10.1002/aenm.201501458
|
[18] |
Y.H. Lin, T.Y. Wei, H.C. Chien, and S.Y. Lu, Manganese oxide/carbon aerogel composite: An outstanding supercapacitor electrode material, Adv. Energy Mater., 1(2011), No. 5, p. 901. doi: 10.1002/aenm.201100256
|
[19] |
Y. Yang, B.W. Deng, X. Liu, Y. Li, B. Yin, and M.B. Yang, Rational design of MnO2-nanosheets-decroated hierarchical porous carbon nanofiber frameworks as high-performance supercapacitor electrode materials, Electrochim. Acta, 324(2019), art. No. 134891. doi: 10.1016/j.electacta.2019.134891
|
[20] |
C. Wang, Y.X. Zeng, X. Xiao, S.J. Wu, G.B. Zhong, K.Q. Xu, Z.F. Wei, W. Su, and X.H. Lu, γ-MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery, J. Energy Chem., 43(2020), p. 182. doi: 10.1016/j.jechem.2019.08.011
|
[21] |
R. Lei, H. Zhang, W. Lei, D. Li, Q. Fang, H.W. Ni, and H.Z. Gu, MnO2 nanowires electrodeposited on freestanding graphenated carbon nanotubes as binder-free electrodes with enhanced supercapacitor performance, Mater. Lett., 249(2019), p. 140. doi: 10.1016/j.matlet.2019.04.063
|
[22] |
Y. Liu, X.M. Zhou, R. Liu, X.L. Li, Y. Bai, and G.H. Yuan, Preparation of three-dimensional compressible MnO2@carbon nanotube sponges with enhanced supercapacitor performance, New J. Chem., 41(2017), No. 24, p. 14906. doi: 10.1039/C7NJ03323K
|
[23] |
H.T. Zhao, W.H. Han, W. Lan, J.Y. Zhou, Z.M. Zhang, W.B. Fu, and E.Q. Xie, Bubble carbon-nanofibers decorated with MnO2 nanosheets as high-performance supercapacitor electrode, Electrochim. Acta, 222(2016), p. 1931. doi: 10.1016/j.electacta.2016.12.007
|
[24] |
C.P. Mao, S.G. Liu, L. Pang, Q. Sun, Y. Liu, M.W. Xu, and Z.S. Lu, Ultrathin MnO2 nanosheets grown on fungal conidium-derived hollow carbon spheres as supercapacitor electrodes, RSC Adv., 6(2016), No. 7, p. 5184. doi: 10.1039/C5RA22193E
|
[25] |
S.W. Liu, K. Li, and X.B. Zheng, Room-temperature facile synthesis of MnO2 on carbon film via UV-photolysis for super capacitor, Prog. Nat. Sci.: Mater. Int., 29(2019), No. 1, p. 16. doi: 10.1016/j.pnsc.2019.03.016
|
[26] |
C. Xie, S.H. Yang, X.Q. Xu, J.W. Shi, and C.M. Niu, Core-shell structured carbon nanotubes/N-doped carbon layer nanocomposites for supercapacitor electrodes, J. Nanopart. Res., 22(2020), No. 1, art. No. 25. doi: 10.1007/s11051-019-4734-8
|
[27] |
L. Peng, Y.R. Liang, H.W. Dong, H. Hu, X. Zhao, Y.J. Cai, Y. Xiao, Y.L. Liu, and M.T. Zheng, Super-hierarchical porous carbons derived from mixed biomass wastes by a stepwise removal strategy for high-performance supercapacitors, J. Power Sources, 377(2018), p. 151. doi: 10.1016/j.jpowsour.2017.12.012
|
[28] |
Y. Zhong, T.L. Shi, Y.Y. Huang, S.Y. Cheng, G.L. Liao, and Z.R. Tang, One-step synthesis of porous carbon derived from starch for all-carbon binder-free high-rate supercapacitor, Electrochim. Acta, 269(2018), p. 676. doi: 10.1016/j.electacta.2018.03.012
|
[29] |
J.Z. Chen, K.L. Fang, Q.Y. Chen, J.L. Xu, and C.P. Wong, Integrated paper electrodes derived from cotton stalks for high-performance flexible supercapacitors, Nano Energy, 53(2018), p. 337. doi: 10.1016/j.nanoen.2018.08.056
|
[30] |
Y. Li, F.F. An, H.R. Wu, S.M. Zhu, C.Y.Z. Lin, M.D. Xia, K. Xue, D. Zhang, and K. Lian, A NiCo2S4 /hierarchical porous carbon for high performance asymmetrical supercapacitor, J. Power Sources, 427(2019), p. 138. doi: 10.1016/j.jpowsour.2019.04.060
|
[31] |
N. Wang, T.F. Li, Y. Song, J.J. Liu, and F. Wang, Metal-free nitrogen-doped porous carbons derived from pomelo peel treated by hypersaline environments for oxygen reduction reaction, Carbon, 130(2018), p. 692. doi: 10.1016/j.carbon.2018.01.068
|
[32] |
X.Y. Fang, G.Z. Li, J.X. Li, H. Jin, J.M. Li, V. Jegatheesan, S. Li, H.B. Wang, and M. Yang, Bamboo charcoal derived high-performance activated carbon via microwave irradiation and KOH activation: Application as hydrogen storage and super-capacitor, Desalin. Water Treat., 96(2017), p. 120. doi: 10.5004/dwt.2017.21528
|
[33] |
F.Q. Guo, X.C. Jiang, X.L. Li, K.Y. Peng, C.L. Guo, and Z.H. Rao, Carbon electrode material from peanut shell by one-step synthesis for high performance supercapacitor, J. Mater. Sci.: Mater. Electron., 30(2019), No. 1, p. 914. doi: 10.1007/s10854-018-0362-9
|
[34] |
C. Quan, X.Y. Jia, and N.B. Gao, Nitrogen-doping activated biomass carbon from tea seed shell for CO2 capture and supercapacitor, Int. J. Energy Res., 44(2020), No. 2, p. 1218. doi: 10.1002/er.5017
|
[35] |
L.Y. Qin, Z.W. Hou, S. Lu, S. Liu, Z.Y. Liu, and E.C. Jiang, Porous carbon derived from pine nut shell prepared by steam activation for supercapacitor electrode material, Int. J. Electrochem. Sci., 14(2019), 9, p. 8907. doi: 10.20964/2019.09.20
|
[36] |
S. Deshagani, K. Krushnamurty, and M. Deepa, High energy density, robust and economical supercapacitor with poly(3, 4-ethylenedioxythiophene)-CO2 activated rice husk derived carbon hybrid electrodes, Mater. Today Energy, 9(2018), p. 137. doi: 10.1016/j.mtener.2018.05.008
|
[37] |
S. Lv, L.Y. Ma, Q. Zhou, X.Y. Shen, and H. Tong, Three-dimensional self-doped hierarchical porous mussel nacre-derived carbons for high performance supercapacitors, J. Mater. Sci.: Mater. Electron., 30(2019), No. 15, p. 14382. doi: 10.1007/s10854-019-01807-x
|
[38] |
H.J. Chen, H.M. Wei, N. Fu, W. Qian, Y.P. Liu, H.L. Lin, and S. Han, Nitrogen-doped porous carbon using ZnCl2 as activating agent for high-performance supercapacitor electrode materials, J. Mater. Sci., 53(2018), No. 4, p. 2669. doi: 10.1007/s10853-017-1453-3
|
[39] |
Z.P. Qiu, Y.S. Wang, X. Bi, T. Zhou, J. Zhou, J.P. Zhao, Z.C. Miao, W.M. Yi, P. Fu, and S.P. Zhuo, Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors, J. Power Sources, 376(2018), p. 82. doi: 10.1016/j.jpowsour.2017.11.077
|
[40] |
D.Y. Zhai, H.D. Du, B.H. Li, Y. Zhu, and F.Y. Kang, Porous graphitic carbons prepared by combining chemical activation with catalytic graphitization, Carbon, 49(2011), No. 2, p. 725. doi: 10.1016/j.carbon.2010.09.057
|
[41] |
X.H. Zhang, K. Zhang, H.X. Li, Q. Wang, L.E. Jin, and Q. Cao, Synthesis of porous graphitic carbon from biomass by one-step method and its role in the electrode for supercapacitor, J. Appl. Electrochem., 48(2018), No. 4, p. 415. doi: 10.1007/s10800-018-1170-x
|
[42] |
Z.M. Pan, Z.M. Lu, L. Xu, and D.W. Wang, A robust 2D porous carbon nanoflake cathode for high energy-power density Zn-ion hybrid supercapacitor applications, Appl. Surf. Sci., 510(2020), art. No. 145384. doi: 10.1016/j.apsusc.2020.145384
|
[43] |
J.S. Yue, G. Lu, P. Zhang, Y.H. Wu, Z.M. Cheng, and X.H. Kang, Oxygen vacancies modulation in graphene/MnOx composite for high performance supercapacitors, Colloids Surf. A, 569(2019), p. 10. doi: 10.1016/j.colsurfa.2019.02.053
|
[44] |
C.Y. Yang, J.L. Shen, C.Y. Wang, H.J. Fei, H. Bao, and G.C. Wang, All-solid-state asymmetric supercapacitor based on reduced graphene oxide/carbon nanotube and carbon fiber paper/polypyrrole electrodes, J. Mater. Chem. A, 2(2014), No. 5, p. 1458. doi: 10.1039/C3TA13953K
|
[45] |
W. Du, X.N. Wang, J. Zhan, X.Q. Sun, L.T. Kang, F.Y. Jiang, X.Y. Zhang, Q. Shao, M.Y. Dong, H. Liu, V. Murugadoss, and Z.H. Guo, Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors, Electrochim. Acta, 296(2019), p. 907. doi: 10.1016/j.electacta.2018.11.074
|
[46] |
Z.H. Xu, Z.H. Sun, Y.W. Zhou, W.F. Chen, T.Q. Zhang, Y.X. Huang, and D.F. Zhang, Insights into the pyrolysis behavior and adsorption properties of activated carbon from waste cotton textiles by FeCl3-activation, Colloids Surf. A, 582(2019), art. No. 123934. doi: 10.1016/j.colsurfa.2019.123934
|
[47] |
H. P. Lv, Y. Yuan, Q.J. Xu, H.M. Liu, Y.G. Wang, and Y.Y. Xia, Carbon quantum dots anchoring MnO2/graphene aerogel exhibits excellent performance as electrode materials for supercapacitor, J. Power Sources, 398(2018), p. 167. doi: 10.1016/j.jpowsour.2018.07.059
|
[48] |
X.J. Zhao, Y.H. Jia, and Z.H. Liu, GO-graphene ink-derived hierarchical 3D-graphene architecture supported Fe3O4 nanodots as high-performance electrodes for lithium/sodium storage and supercapacitors, J. Colloid Interface Sci., 536(2019), p. 463. doi: 10.1016/j.jcis.2018.10.071
|
[49] |
X.L. Su, J.R. Chen, G.P. Zheng, J.H. Yang, X.X. Guan, P. Liu, and X.C. Zheng, Three-dimensional porous activated carbon derived from loofah sponge biomass for supercapacitor applications, Appl. Surf. Sci., 436(2018), p. 327. doi: 10.1016/j.apsusc.2017.11.249
|
[50] |
D.X. Guo, X.M. Song, B.N. Li, L.C. Tan, H.Y. Ma, H.J. Pang, X.M. Wang, L.L. Zhang, and D.W. Chu, Oxygen enriched carbon with hierarchical porous structure derived from biomass waste for high-performance symmetric supercapacitor with decent specific capacity, J. Electroanal. Chem., 855(2019), art. No. 113349. doi: 10.1016/j.jelechem.2019.113349
|
[51] |
C. Wang, Y. Xiong, H.W. Wang, and Q.F. Sun, All-round utilization of biomass derived all-solid-state asymmetric carbon-based supercapacitor, J. Colloid Interface Sci., 528(2018), p. 349. doi: 10.1016/j.jcis.2018.05.103
|
[52] |
K.L. Fang, J.Z. Chen, X.Y. Zhou, C.T. Mei, Q.H. Tian, J.L. Xu, and C.P. Wong, Decorating biomass-derived porous carbon with Fe2O3 ultrathin film for high-performance supercapacitors, Electrochim. Acta, 261(2018), p. 198. doi: 10.1016/j.electacta.2017.12.140
|
[53] |
M.Y. Yuan, Y.Q. Zhang, B. Niu, F. Jiang, X.N. Yang, and M. Li, Chitosan-derived hybrid porous carbon with the novel tangerine pith-like surface as supercapacitor electrode, J. Mater. Sci., 54(2019), No. 23, p. 14456. doi: 10.1007/s10853-019-03911-z
|
[54] |
C.J. Wang, D.P. Wu, H.J. Wang, Z.Y. Gao, F. Xu, and K. Jiang, A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high capacity, J. Mater. Chem. A, 6(2018), No. 3, p. 1244. doi: 10.1039/C7TA07579K
|
[55] |
Y. Lin, Z.Y. Chen, C.Y. Yu, and W.B. Zhong, Facile synthesis of high nitrogen-doped content, mesopore-dominated biomass-derived hierarchical porous graphitic carbon for high performance supercapacitors, Electrochim. Acta, 334(2020), art. No. 135615. doi: 10.1016/j.electacta.2020.135615
|
[56] |
Y. Sun, N.B. Huang, X.N. Sun, D.C. Wang, J.J. Zhang, S.M. Qiao, and Z.Q. Gao, An improvement on capacitive properties of clew-like MnO2 by thermal treatment under nitrogen, Int. J. Hydrogen Energy, 42(2017), No. 31, p. 20016. doi: 10.1016/j.ijhydene.2017.05.234
|
[57] |
W.C. Li, Y. Ding, W.Q. Zhang, Y. Shu, L. Zhang, F.C. Yang, and Y.H. Shen, Lignocellulosic biomass for ethanol production and preparation of activated carbon applied for supercapacitor, J. Taiwan Inst. Chem. Eng., 64(2016), p. 166. doi: 10.1016/j.jtice.2016.04.010
|
[58] |
L.F. Chen, X.D. Zhang, H.W. Liang, M.G. Kong, Q.F. Guan, P. Chen, Z.Y. Wu, and S.H. Yu, Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors, ACS Nano, 6(2012), No. 8, p. 7092. doi: 10.1021/nn302147s
|
[59] |
M.J. Cui, S.C. Tang, Y.J. Ma, X.L. Shi, J.A. Syed, and X.K. Meng, Monolayer standing MnO2-nanosheet covered Mn3O4 octahedrons anchored in 3D N-doped graphene networks as supercapacitor electrodes with remarkable cycling stability, J. Power Sources, 396(2018), p. 483. doi: 10.1016/j.jpowsour.2018.06.063
|
[60] |
Y.M. He, W.J. Chen, X.D. Li, Z.X. Zhang, J.C. Fu, C.H. Zhao, and E.Q. Xie, Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes, ACS Nano, 7(2013), No. 1, p. 174. doi: 10.1021/nn304833s
|
[61] |
Z.M. Li, Y.F. An, Z.A. Hu, N. An, Y.D. Zhang, B.S. Guo, Z.Y. Zhang, Y.Y. Yang, and H.Y. Wu, Preparation of a two-dimensional flexible MnO2/graphene thin film and its application in a supercapacitor, J. Mater. Chem. A, 4(2016), No. 27, p. 10618. doi: 10.1039/C6TA03358J
|
[62] |
L.P. Yu and G.Z. Chen, Redox electrode materials for supercapatteries, J. Power Sources, 326(2016), p. 604. doi: 10.1016/j.jpowsour.2016.04.095
|