Jun Wang, Fan Zhao, Guoliang Xie, Jiaxuan Xu,  and Xinhua Liu, Hot compressive deformation of eutectic Al–17at% Cu alloy on the interface of the Cu–Al composite plate produced by horizontal continuous casting, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1578-1588. https://doi.org/10.1007/s12613-021-2276-4
Cite this article as:
Jun Wang, Fan Zhao, Guoliang Xie, Jiaxuan Xu,  and Xinhua Liu, Hot compressive deformation of eutectic Al–17at% Cu alloy on the interface of the Cu–Al composite plate produced by horizontal continuous casting, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1578-1588. https://doi.org/10.1007/s12613-021-2276-4
Research Article

Hot compressive deformation of eutectic Al–17at% Cu alloy on the interface of the Cu–Al composite plate produced by horizontal continuous casting

+ Author Affiliations
  • Corresponding author:

    Xinhua Liu    E-mail: Liuxinhua18@163.com

  • Received: 4 November 2020Revised: 22 February 2021Accepted: 2 March 2021Available online: 3 March 2021
  • On the interface of the Cu–Al composite plate from horizontal continuous casting, the eutectic microstructure layer thickness accounts for more than 90% of the total interface thickness, and the deformation in rolling forming plays an important role in the quality of the composite plate. The eutectic microstructure material on the interface of the Cu–Al composite plate was prepared by changing the cooling rate of ingot solidification and the deformation in hot compression was investigated. The results show that when the deformation temperature is over 300°C, the softening effect of dynamic recrystallization of α-Al is greater than the hardening effect, and uniform plastic deformation of eutectic microstructure is caused. The constitutive equation of flow stress in the eutectic microstructure layer was established by Arrhenius hyperbolic-sine mathematics model, providing a reliable theoretical basis for the deformation of the Cu–Al composite plate.
  • loading
  • [1]
    T. Liu, P. Liu, and Q.D. Wang, Research progress on copper/aluminum bimetal composite, Mater. Rev., 27(2013), No. 19, p. 1.
    [2]
    S.Y. Liu, A.Q. Wang, S.J. Lyu, and H.W. Tian, Interfacial properties and further processing of Cu/Al laminated composite: A review, Mater. Rev., 32(2018), No. 5, p. 828.
    [3]
    Y.J. Su, X.H. Liu, Y.F. Wu, H.Y. Huang, and J.X. Xie, Numerical simulation of temperature field in horizontal core-filling continuous casting for copper cladding aluminum rods, Int. J. Miner. Metall. Mater., 20(2013), No. 7, p. 684. doi: 10.1007/s12613-013-0784-6
    [4]
    H.M. Xia, L. Zhang, Y.C. Zhu, N. Li, Y.Q. Sun, J.D. Zhang, and H.Z. Ma, Mechanical properties of graphene nanoplatelets reinforced 7075 aluminum alloy composite fabricated by spark plasma sintering, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1295. doi: 10.1007/s12613-020-2009-0
    [5]
    R.Y. Feng, W.X. Wang, Z.F. Yan, D.H. Wang, S.P. Wan, and N. Shi, Fatigue limit assessment of a 6061 aluminum alloy based on infrared thermography and steady ratcheting effect, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1301. doi: 10.1007/s12613-019-1942-2
    [6]
    Z.H. Deng, H.Q. Yin, X. Jiang, C. Zhang, G.F. Zhang, B. Xu, G.Q. Yang, T. Zhang, M. Wu, and X.H. Qu, Machine-learning-assisted prediction of the mechanical properties of Cu–Al alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 362. doi: 10.1007/s12613-019-1894-6
    [7]
    M.M.H. Athar and B. Tolaminejad, Weldability window and the effect of interface morphology on the properties of Al/Cu/Al laminated composites fabricated by explosive welding, Mater. Des., 86(2015), p. 516. doi: 10.1016/j.matdes.2015.07.114
    [8]
    M.M. Hoseini-Athar and B. Tolaminejad, Interface morphology and mechanical properties of Al–Cu–Al laminated composites fabricated by explosive welding and subsequent rolling process, Met. Mater. Int., 22(2016), No. 4, p. 670. doi: 10.1007/s12540-016-5687-4
    [9]
    T. Wang, S. Li, Z.K. Ren, J.C. Han, and Q.X. Huang, A novel approach for preparing Cu/Al laminated composite based on corrugated roll, Mater. Lett., 234(2019), p. 79. doi: 10.1016/j.matlet.2018.09.060
    [10]
    L. Li, K. Nagai, and F.X. Yin, Progress in cold roll bonding of metals, Sci. Technol. Adv. Mater., 9(2008), No. 2, art. No. 023001. doi: 10.1088/1468-6996/9/2/023001
    [11]
    X.B. Li, G.Y. Zu, and P. Wang, Microstructural development and its effects on mechanical properties of Al/Cu laminated composite, Trans. Nonferrous Met. Soc. China, 25(2015), No. 1, p. 36. doi: 10.1016/S1003-6326(15)63576-2
    [12]
    W.M. Jiang, F. Guan, G.Y. Li, H.X. Jiang, J.W. Zhu, and Z.T. Fan, Processing of Al/Cu bimetal via a novel compound casting method, Mater. Manuf. Processes, 34(2019), No. 9, p. 1016. doi: 10.1080/10426914.2019.1615084
    [13]
    F. Guan, W.M. Jiang, G.Y. Li, H.X. Jiang, J.W. Zhu, and Z.T. Fan, Interfacial bonding mechanism and pouring temperature effect on Al/Cu bimetal prepared by a novel compound casting process, Mater. Res. Express, 6(2019), No. 9, art. No. 096529. doi: 10.1088/2053-1591/ab2d8f
    [14]
    S.Y. Liu, A.Q. Wang, H.W. Tian, and J.P. Xie, The synergetic tensile deformation behavior of Cu/Al laminated composites prepared by twin-roll casting technology, Mater. Res. Express, 6(2018), No. 1, art. No. 016530. doi: 10.1088/2053-1591/aae630
    [15]
    W.K. Lu, J.P. Xie, A.Q. Wang, J.W. Li, and Y.D. Zhang, Effects of annealing temperature on interfacial microstructure and mechanical properties of Cu/Al roll-casted composite plate, Mater. Mech. Eng., 38(2014), No. 3, p. 14.
    [16]
    J. Wang, Y. Lei, X.H. Liu, G.L. Xie, Y.Q. Jiang, and S. Zhang, Microstructure and properties of Cu–Al-laminated composites fabricated via formation of a horizontal casting composite, Chin. J. Eng., 42(2020), No. 2, p. 216.
    [17]
    Y.J. Su, X.H. Liu, H.Y. Huang, C.J. Wu, X.F. Liu, and J.X. Xie, Effects of processing parameters on the fabrication of copper cladding aluminum rods by horizontal core-filling continuous casting, Metall. Mater. Trans. B, 42(2011), No. 1, p. 104. doi: 10.1007/s11663-010-9449-2
    [18]
    Y.F. Wu and X.H. Liu, FE simulation of rolling for copper cladding aluminum with rectangle section, J. Plast. Eng., 22(2015), No. 6, p. 91.
    [19]
    J.Y. Li, J.T. Luo, J.L. Shen, and Y.F. Gu, Roll deformation process simulation and rolling force calculation formula of copper clad aluminum composites, Acta Mater. Compos. Sin., 31(2014), No. 6, p. 1551.
    [20]
    Y.B. Luo, X.Y. Dai, and J. Zhang, Numerical simulation and experimental investigation on rolling deformation strain of copper cladding aluminum flat wires, Mater. Rev., 28(2014), No. 8, p. 157.
    [21]
    S.Y. Liu, A.Q. Wang, T.T. Liang, and J.P. Xie, Hot deformation behavior of Cu/Al laminated composites under interface constraint effect, Mater. Res. Express, 5(2018), No. 6, art. No. 066531. doi: 10.1088/2053-1591/aacaeb
    [22]
    W.Y. Wang, Q.L. Pan, Y.W. Sun, X.D. Wang, A.D. Li, and W.B. Song, Study on hot compressive deformation behaviors and corresponding industrial extrusion of as-homogenized Al–7.82Zn–1.96Mg–2.35Cu–0.11Zr alloy, J. Mater. Sci., 53(2018), No. 16, p. 11728. doi: 10.1007/s10853-018-2388-z
    [23]
    C. Zener and J.H. Hollomon, Problems in non-elastic deformation of metals, J. Appl. Phys., 17(1946), No. 2, p. 69. doi: 10.1063/1.1707696
    [24]
    B. Zhang, L.L. Zhu, K.S. Wang, W. Wang, and Y.X. Hao, High temperature plastic deformation behavior and constitutive equation of pure nickel, Chin. J. Rare Met., 39(2015), No. 5, p. 406.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(1103) PDF Downloads(48) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return