Cite this article as: |
Jun Wang, Fan Zhao, Guoliang Xie, Jiaxuan Xu, and Xinhua Liu, Hot compressive deformation of eutectic Al–17at% Cu alloy on the interface of the Cu–Al composite plate produced by horizontal continuous casting, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1578-1588. https://doi.org/10.1007/s12613-021-2276-4 |
Xinhua Liu E-mail: Liuxinhua18@163.com
[1] |
T. Liu, P. Liu, and Q.D. Wang, Research progress on copper/aluminum bimetal composite, Mater. Rev., 27(2013), No. 19, p. 1.
|
[2] |
S.Y. Liu, A.Q. Wang, S.J. Lyu, and H.W. Tian, Interfacial properties and further processing of Cu/Al laminated composite: A review, Mater. Rev., 32(2018), No. 5, p. 828.
|
[3] |
Y.J. Su, X.H. Liu, Y.F. Wu, H.Y. Huang, and J.X. Xie, Numerical simulation of temperature field in horizontal core-filling continuous casting for copper cladding aluminum rods, Int. J. Miner. Metall. Mater., 20(2013), No. 7, p. 684. doi: 10.1007/s12613-013-0784-6
|
[4] |
H.M. Xia, L. Zhang, Y.C. Zhu, N. Li, Y.Q. Sun, J.D. Zhang, and H.Z. Ma, Mechanical properties of graphene nanoplatelets reinforced 7075 aluminum alloy composite fabricated by spark plasma sintering, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1295. doi: 10.1007/s12613-020-2009-0
|
[5] |
R.Y. Feng, W.X. Wang, Z.F. Yan, D.H. Wang, S.P. Wan, and N. Shi, Fatigue limit assessment of a 6061 aluminum alloy based on infrared thermography and steady ratcheting effect, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1301. doi: 10.1007/s12613-019-1942-2
|
[6] |
Z.H. Deng, H.Q. Yin, X. Jiang, C. Zhang, G.F. Zhang, B. Xu, G.Q. Yang, T. Zhang, M. Wu, and X.H. Qu, Machine-learning-assisted prediction of the mechanical properties of Cu–Al alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 362. doi: 10.1007/s12613-019-1894-6
|
[7] |
M.M.H. Athar and B. Tolaminejad, Weldability window and the effect of interface morphology on the properties of Al/Cu/Al laminated composites fabricated by explosive welding, Mater. Des., 86(2015), p. 516. doi: 10.1016/j.matdes.2015.07.114
|
[8] |
M.M. Hoseini-Athar and B. Tolaminejad, Interface morphology and mechanical properties of Al–Cu–Al laminated composites fabricated by explosive welding and subsequent rolling process, Met. Mater. Int., 22(2016), No. 4, p. 670. doi: 10.1007/s12540-016-5687-4
|
[9] |
T. Wang, S. Li, Z.K. Ren, J.C. Han, and Q.X. Huang, A novel approach for preparing Cu/Al laminated composite based on corrugated roll, Mater. Lett., 234(2019), p. 79. doi: 10.1016/j.matlet.2018.09.060
|
[10] |
L. Li, K. Nagai, and F.X. Yin, Progress in cold roll bonding of metals, Sci. Technol. Adv. Mater., 9(2008), No. 2, art. No. 023001. doi: 10.1088/1468-6996/9/2/023001
|
[11] |
X.B. Li, G.Y. Zu, and P. Wang, Microstructural development and its effects on mechanical properties of Al/Cu laminated composite, Trans. Nonferrous Met. Soc. China, 25(2015), No. 1, p. 36. doi: 10.1016/S1003-6326(15)63576-2
|
[12] |
W.M. Jiang, F. Guan, G.Y. Li, H.X. Jiang, J.W. Zhu, and Z.T. Fan, Processing of Al/Cu bimetal via a novel compound casting method, Mater. Manuf. Processes, 34(2019), No. 9, p. 1016. doi: 10.1080/10426914.2019.1615084
|
[13] |
F. Guan, W.M. Jiang, G.Y. Li, H.X. Jiang, J.W. Zhu, and Z.T. Fan, Interfacial bonding mechanism and pouring temperature effect on Al/Cu bimetal prepared by a novel compound casting process, Mater. Res. Express, 6(2019), No. 9, art. No. 096529. doi: 10.1088/2053-1591/ab2d8f
|
[14] |
S.Y. Liu, A.Q. Wang, H.W. Tian, and J.P. Xie, The synergetic tensile deformation behavior of Cu/Al laminated composites prepared by twin-roll casting technology, Mater. Res. Express, 6(2018), No. 1, art. No. 016530. doi: 10.1088/2053-1591/aae630
|
[15] |
W.K. Lu, J.P. Xie, A.Q. Wang, J.W. Li, and Y.D. Zhang, Effects of annealing temperature on interfacial microstructure and mechanical properties of Cu/Al roll-casted composite plate, Mater. Mech. Eng., 38(2014), No. 3, p. 14.
|
[16] |
J. Wang, Y. Lei, X.H. Liu, G.L. Xie, Y.Q. Jiang, and S. Zhang, Microstructure and properties of Cu–Al-laminated composites fabricated via formation of a horizontal casting composite, Chin. J. Eng., 42(2020), No. 2, p. 216.
|
[17] |
Y.J. Su, X.H. Liu, H.Y. Huang, C.J. Wu, X.F. Liu, and J.X. Xie, Effects of processing parameters on the fabrication of copper cladding aluminum rods by horizontal core-filling continuous casting, Metall. Mater. Trans. B, 42(2011), No. 1, p. 104. doi: 10.1007/s11663-010-9449-2
|
[18] |
Y.F. Wu and X.H. Liu, FE simulation of rolling for copper cladding aluminum with rectangle section, J. Plast. Eng., 22(2015), No. 6, p. 91.
|
[19] |
J.Y. Li, J.T. Luo, J.L. Shen, and Y.F. Gu, Roll deformation process simulation and rolling force calculation formula of copper clad aluminum composites, Acta Mater. Compos. Sin., 31(2014), No. 6, p. 1551.
|
[20] |
Y.B. Luo, X.Y. Dai, and J. Zhang, Numerical simulation and experimental investigation on rolling deformation strain of copper cladding aluminum flat wires, Mater. Rev., 28(2014), No. 8, p. 157.
|
[21] |
S.Y. Liu, A.Q. Wang, T.T. Liang, and J.P. Xie, Hot deformation behavior of Cu/Al laminated composites under interface constraint effect, Mater. Res. Express, 5(2018), No. 6, art. No. 066531. doi: 10.1088/2053-1591/aacaeb
|
[22] |
W.Y. Wang, Q.L. Pan, Y.W. Sun, X.D. Wang, A.D. Li, and W.B. Song, Study on hot compressive deformation behaviors and corresponding industrial extrusion of as-homogenized Al–7.82Zn–1.96Mg–2.35Cu–0.11Zr alloy, J. Mater. Sci., 53(2018), No. 16, p. 11728. doi: 10.1007/s10853-018-2388-z
|
[23] |
C. Zener and J.H. Hollomon, Problems in non-elastic deformation of metals, J. Appl. Phys., 17(1946), No. 2, p. 69. doi: 10.1063/1.1707696
|
[24] |
B. Zhang, L.L. Zhu, K.S. Wang, W. Wang, and Y.X. Hao, High temperature plastic deformation behavior and constitutive equation of pure nickel, Chin. J. Rare Met., 39(2015), No. 5, p. 406.
|