Zhiwen Hou, Yanwu Dong, Zhouhua Jiang, Zhihao Hu, Limeng Liu, and Kunjie Tian, Effect of an external magnetic field on improved electroslag remelting cladding process, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1511-1521. https://doi.org/10.1007/s12613-021-2277-3
Cite this article as:
Zhiwen Hou, Yanwu Dong, Zhouhua Jiang, Zhihao Hu, Limeng Liu, and Kunjie Tian, Effect of an external magnetic field on improved electroslag remelting cladding process, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1511-1521. https://doi.org/10.1007/s12613-021-2277-3
Research ArticleCover Article

Effect of an external magnetic field on improved electroslag remelting cladding process

+ Author Affiliations
  • Corresponding author:

    Yanwu Dong    E-mail: dongyw@smm.neu.edu.cn

  • Received: 11 November 2020Revised: 28 February 2021Accepted: 1 March 2021Available online: 3 March 2021
  • Obtaining a uniform interface temperature field plays a crucial role in the interface bonding quality of bimetal compound rolls. Therefore, this study proposes an improved electroslag remelting cladding (ESRC) process using an external magnetic field to improve the uniformity of the interface temperature of compound rolls. The improved ESRC comprises a conventional ESRC circuit and an external coil circuit. A comprehensive 3D model, including multi-physics fields, is proposed to study the effect of external magnetic fields on the multi-physics fields and interface temperature uniformity. The simulated results demonstrate that the non-uniform Joule heat and flow fields cause a non-uniform interface temperature in the conventional ESRC. As for the improved ESRC, the magnetic flux density ( B coil) along the z-axis is produced by an anticlockwise current of the external coil. The rotating Lorentz force is generated from the interaction between the radial current and axial B coil. Therefore, the slag pool flows clockwise, which enhances circumferential effective thermal conductivity. As a result, the uniformity of the temperature field and interface temperature improve. In addition, the magnetic flux density and rotational speed of the simulated results are in good agreement with those of the experimental results, which verifies the accuracy of the improved ESRC model. Therefore, an improved ESRC is efficient for industrial production of the compound roll with a uniform interface bonding quality.
  • loading
  • [1]
    H.G. Fu, Q. Xiao, and J. Xing, Manufacture of centrifugal cast high speed steel rolls for wire rod mills, Ironmaking Steelmaking, 31(2004), No. 5, p. 389. doi: 10.1179/030192304225019252
    [2]
    Y.K. Luan, N.N. Song, Y.L. Bai, X.H. Kang, and D.Z. Li, Effect of solidification rate on the morphology and distribution of eutectic carbides in centrifugal casting high-speed steel rolls, J. Mater. Process. Technol., 210(2010), No. 3, p. 536. doi: 10.1016/j.jmatprotec.2009.10.017
    [3]
    A. Cofiño-Villar, F. Alvarez-Antolin, and J. Asensio-Lozano, Enhancement of the quality of the shell-core bond interface in duplex work rolls manufactured by centrifugal casting used in hot strip mills, Materials, 12(2019), No. 8, art. No. 1304. doi: 10.3390/ma12081304
    [4]
    B.I. Medovar, L.B. Medovar, A.V. Chemets, V.B. Shabanov, and O.V. Sviridov, Ukrainian ESS LM HSS rolls for hot strip mills, [in] 42nd Mechanical Working and Steel Processing Conference Proceedings, Toronto, 2000, p. 647.
    [5]
    W.M. Li, X. Geng, H.B. Li, G.S. Yi, H. Feng, and Z.H. Jiang, A comprehensive electromagnetic model of electrical slag surfacing with liquid metal process for preparing compound rolls, J. Iron Steel Res. Int., 19(2012), No. S2, p. 921.
    [6]
    Z.H. Jiang, Y.L. Cao, Y.W. Dong, D. Hou, H.B. Cao, and J.X. Fan, Numerical simulation of the electroslag casting with liquid metal for producing composite roll, Steel Res. Int., 87(2016), No. 6, p. 699. doi: 10.1002/srin.201500197
    [7]
    Y. Sano, T. Hattori, and M. Haga, Characteristics of high-carbon high speed steel rolls for hot strip mill, ISIJ Int., 32(1992), No. 11, p. 1194. doi: 10.2355/isijinternational.32.1194
    [8]
    M. Hashimoto, S. Otomo, K. Yoshida, K. Kimura, R. Kurahashi, T. Kawakami, and T. Kouga, Development of high-performance roll by continuous pouring process for cladding, ISIJ Int., 32(1992), No. 11, p. 1202. doi: 10.2355/isijinternational.32.1202
    [9]
    M. Hashimoto, T. Tanaka, T. Inoue, M. Yamashita, R. Kurahashi, and R. Terakado, Development of cold rolling mill rolls of high speed steel type by using continuous pouring process for cladding, ISIJ Int., 42(2002), No. 9, p. 982. doi: 10.2355/isijinternational.42.982
    [10]
    S.V. Tomilenko and Y.M. Kuskov, Special features of melting of parent metal in electroslag surfacing in a current-supplying solidification mould, Weld. Int., 14(2000), No. 11, p. 893. doi: 10.1080/09507110009549288
    [11]
    S.V. Tomilenko and Y.M. Kuskov, Using direct and alternating current with reduced frequency in surfacing in sectional current-supplying solidification moulds, Weld. Int., 16(2002), No. 7, p. 572. doi: 10.1080/09507110209549579
    [12]
    Y.M. Kuskov, Special features of electroslag surfacing with a granulated filler in a current-supplying solidification mould, Weld. Int., 18(2004), No. 2, p. 160. doi: 10.1533/wint.2004.3267
    [13]
    Y.L. Cao, Z.H. Jiang, Y.W. Dong, G.Q. Li, Z.W. Hou, and Q. Wang, Research on the bimetallic composite roll produced by a new electroslag cladding method: Microstructure and property of the bonding interface, Ironmaking Steelmaking, 47(2020), No. 6, p. 686. doi: 10.1080/03019233.2019.1575038
    [14]
    Y.L. Cao, Z.H. Jiang, Y.W. Dong, X. Deng, L. Medovar, and G. Stovpchenko, Research on the bonding interface of high speed steel/ductile cast iron composite roll manufactured by an improved electroslag cladding method, Metals, 8(2018), No. 6, art. No. 390. doi: 10.3390/met8060390
    [15]
    Y.L. Cao, Z.H. Jiang, Y.W. Dong, X. Deng, L. Medovar, and G. Stovpchenko, Research on the bimetallic composite roll produced by an improved electroslag cladding method: Mathematical simulation of the power supply circuits, ISIJ Int., 58(2018), No. 6, p. 1052. doi: 10.2355/isijinternational.ISIJINT-2017-703
    [16]
    M. Shimizu, O. Shitamura, S. Matsuo, T. Kamata, and Y. Kondo, Development of high performance new composite roll, ISIJ Int., 32(1992), No. 11, p. 1244. doi: 10.2355/isijinternational.32.1244
    [17]
    Y. Asai, M. Hori, and N. Tokumitsu, Method of Electroslag Surfacing of Components Having a Cylindrical Surface, US Patent, US04373128A, 1983.
    [18]
    K. Hideyo, K, Yasuo, and A. Kimihiko, Method and Apparatus for Manufacturing a Composite Steel Ingot, US Patent, US04544019A, 1985.
    [19]
    C.B. Shi, Deoxidation of electroslag remelting (ESR)–A review, ISIJ Int., 60(2020), No. 6, p. 1083. doi: 10.2355/isijinternational.ISIJINT-2019-661
    [20]
    C.B. Shi, Y. Huang, J.X. Zhang, J. Li, and X. Zheng, Review on desulfurization in electroslag remelting, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 18. doi: 10.1007/s12613-020-2075-3
    [21]
    S.J. Li, G.G. Cheng, Z.Q. Miao, L. Chen, and X.Y. Jiang, Effect of slag on oxide inclusions in carburized bearing steel during industrial electroslag remelting, Int. J. Miner. Metall. Mater., 26(2019), No. 3, p. 291. doi: 10.1007/s12613-019-1737-5
    [22]
    Q. Wang, R. Lu, Z.Y. Chen, G.Q. Li, and Y.X. Yang, CFD and experimental investigation of desulfurization of rejected electrolytic manganese metal in electroslag remelting process, Metall. Mater. Trans. B, 51(2020), No. 2, p. 649. doi: 10.1007/s11663-019-01766-y
    [23]
    Q. Wang, Y. Liu, G.Q. Li, Y.M. Gao, Z. He, and B.K. Li, Predicting transfer behavior of oxygen and sulfur in electroslag remelting process, Appl. Therm. Eng., 129(2018), p. 378. doi: 10.1016/j.applthermaleng.2017.10.062
    [24]
    X.F. Shi, L.Z. Chang, and J.J. Wang, Effect of ultrasonic power introduced by a mold copper plate on the solidification process, Int. J. Miner. Metall. Mater., 24(2017), No. 2, p. 139. doi: 10.1007/s12613-017-1388-3
    [25]
    L. Rao, S.J. Wang, J.H. Zhao, M.P. Geng, and G. Ding, Experimental and simulation studies on fabricating GCr15/40Cr bimetallic compound rollers using electroslag surfacing with liquid metal method, J. Iron Steel Res. Int., 21(2014), No. 9, p. 869. doi: 10.1016/S1006-706X(14)60155-2
    [26]
    D.B. Jiang and M.Y. Zhu, Flow and solidification in billet continuous casting machine with dual electromagnetic stirrings of mold and the final solidification, Steel Res. Int., 86(2015), No. 9, p. 993. doi: 10.1002/srin.201400281
    [27]
    H. Wang, Y.B. Zhong, L.C. Dong, Z. Shen, Q. Li, W.Q. Li, T.X. Zheng, W.L. Ren, Z.S. Lei, and Z.M. Ren, Coupled 3D numerical model of droplet evolution behaviors during the magnetically controlled electroslag remelting process, JOM, 70(2018), No. 12, p. 2917. doi: 10.1007/s11837-018-3029-3
    [28]
    K.I. Miyazawa, T. Fukaya, S. Asai, I. Muchi, M. Choudhary, and J. Szekely, The effect of an externally imposed magnetic field on the behavior of a laboratory scale ESR system, ISIJ Int., 25(1985), No. 5, p. 386. doi: 10.2355/isijinternational1966.25.386
    [29]
    A. Mitchell and B. Hernandez-Morales, Electromagnetic stirring with alternating current during electroslag remelting, Metall. Trans. B, 21(1990), No. 4, p. 723. doi: 10.1007/BF02654251
    [30]
    B.K. Li, F. Wang, and F. Tsukihashi, Current, magnetic field and joule heating in electroslag remelting processes, ISIJ Int., 52(2012), No. 7, p. 1289. doi: 10.2355/isijinternational.52.1289
    [31]
    X.H. Wang and Y. Li, A comprehensive 3D mathematical model of the electroslag remelting process, Metall. Mater. Trans. B, 46(2015), No. 4, p. 1837. doi: 10.1007/s11663-015-0342-x
    [32]
    ANSYS, Inc 15.0, August 2013. Canonsburg, USA.
    [33]
    Y.W. Dong, Mathematical Modeling of Solidification During Electroslag Remelting Process and Development of New Slags [Dissertation], Northeastern University, Shenyang, 2008, p. 42.
    [34]
    Y.W. Dong, Z.H. Jiang, J.X. Fan, Y.L. Cao, D. Hou, and H.B. Cao, Comprehensive mathematical model for simulating electroslag remelting, Metall. Mater. Trans. B, 47(2016), No. 2, p. 1475. doi: 10.1007/s11663-015-0546-0
    [35]
    O. Kazumi, Electro-Slag remelting slag, B. Jpn. Inst. Met., 18(1979), No. 10, p. 684. doi: 10.2320/materia1962.18.684
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(5)

    Share Article

    Article Metrics

    Article Views(783) PDF Downloads(38) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return