Cite this article as: |
Lei-ying Wang, Li-fan Wang, Rui Wang, Rui Xu, Chun Zhan, Woochul Yang, and Gui-cheng Liu, Solid electrolyte–electrode interface based on buffer therapy in solid-state lithium batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1584-1602. https://doi.org/10.1007/s12613-021-2278-2 |
Rui Xu E-mail: rxu2013@gmail.com
Chun Zhan E-mail: zhanchun@ustb.edu.cn
Gui-cheng Liu E-mail: log67@163.com
In the past few years, the all-solid lithium battery has attracted worldwide attentions, the ionic conductivity of some all-solid lithium-ion batteries has reached 10−3–10−2 S/cm, indicating that the transport of lithium ions in solid electrolytes is no longer a major problem. However, some interface issues become research hotspots. Examples of these interfacial issues include the electrochemical decomposition reaction at the electrode–electrolyte interface; the low effective contact area between the solid electrolyte and the electrode etc. In order to solve the issues, researchers have pursued many different approaches. The addition of a buffer layer between the electrode and the solid electrolyte has been at the center of this endeavor. In this review paper, we provide a systematic summarization of the problems on the electrode–solid electrolyte interface and detailed reflection on the latest works of buffer-based therapies, and the review will end with a personal perspective on the improvement of buffer-based therapies.
[1] |
M.S. Whittingham, Lithium batteries and cathode materials, Chem. Rev., 104(2004), No. 10, p. 4271. doi: 10.1021/cr020731c
|
[2] |
W.D. Li, B.H. Song, and A. Manthiram, High-voltage positive electrode materials for lithium-ion batteries, Chem. Soc. Rev., 46(2017), No. 10, p. 3006. doi: 10.1039/C6CS00875E
|
[3] |
C. Zhan, T.P. Wu, J. Lu, and K. Amine, Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes—A critical review, Energy Environ. Sci., 11(2018), No. 2, p. 243. doi: 10.1039/C7EE03122J
|
[4] |
L. Fan, S.Y. Wei, S.Y. Li, Q. Li, and Y.Y. Lu, Recent progress of the solid-state electrolytes for high-energy metal-based batteries, Adv. Energy Mater., 8(2018), No. 11, art. No. 1702657. doi: 10.1002/aenm.201702657
|
[5] |
C.P. Yang, K. Fu, Y. Zhang, E. Hitz, and L.B. Hu, Protected lithium-metal anodes in batteries: From liquid to solid, Adv. Mater., 29(2017), No. 36, art. No. 1701169. doi: 10.1002/adma.201701169
|
[6] |
C.W. Sun, J. Liu, Y.D. Gong, D.P. Wilkinson, and J.J. Zhang, Recent advances in all-solid-state rechargeable lithium batteries, Nano Energy, 33(2017), p. 363. doi: 10.1016/j.nanoen.2017.01.028
|
[7] |
L.F. Guo, S.Y. Zhang, J. Xie, D. Zhen, Y. Jin, K.Y. Wan, D.G. Zhuang, W.Q. Zheng, and X.B. Zhao, Controlled synthesis of nanosized Si by magnesiothermic reduction from diatomite as anode material for Li-ion batteries, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 515. doi: 10.1007/s12613-019-1900-z
|
[8] |
Z.T. Dong, Y. Li, K.L. Ren, S.Q. Yang, Y.M. Zhao, Y.J. Yuan, L. Zhang, and S.M. Han, Enhanced electrochemical properties of LaFeO3 with Ni modification for MH–Ni batteries, Int. J. Miner. Metall. Mater., 25(2018), No. 10, p. 1201. doi: 10.1007/s12613-018-1672-x
|
[9] |
L.P. Wang, G. Chen, Q.X. Shen, G.M. Li, S.Y. Guan, and B. Li, Direct electrodeposition of ionic liquid-based template-free SnCo alloy nanowires as an anode for Li-ion batteries, Int. J. Miner. Metall. Mater., 25(2018), No. 9, p. 1027. doi: 10.1007/s12613-018-1653-0
|
[10] |
X.P. Liang, F.H. Tan, F. Wei, and J. Du, Research progress of all solid-state thin film lithium battery, IOP Conf. Ser.: Earth Environ. Sci., 218(2019), art. No. 012138. doi: 10.1088/1755-1315/218/1/012138
|
[11] |
M. Stanley Whittingham, F. Omenya, and C. Siu, Solid State Ionics - the key to the discovery, introduction and domination of lithium batteries for portable energy storage, Solid State Ionics, 317(2018), p. 60. doi: 10.1016/j.ssi.2018.01.007
|
[12] |
A. Banerjee, X.F. Wang, C.C. Fang, E.A. Wu, and Y.S. Meng, Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes, Chem. Rev., 120(2020), No. 14, p. 6878. doi: 10.1021/acs.chemrev.0c00101
|
[13] |
J. Zhang, C. Zheng, L.J. Li, Y. Xia, H. Huang, Y.P. Gan, C. Liang, X.P. He, X.Y. Tao, and W.K. Zhang, Lithium batteries: Unraveling the intra and intercycle interfacial evolution of Li6PS5Cl-based all-solid-state lithium batteries, Adv. Energy Mater., 10(2020), No. 4, art. No. 2070017. doi: 10.1002/aenm.202070017
|
[14] |
F. Aguesse, W. Manalastas, L. Buannic, J.M. Lopez del Amo, G. Singh, A. Llordés, and J. Kilner, Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal, ACS Appl. Mater. Interfaces, 9(2017), No. 4, p. 3808. doi: 10.1021/acsami.6b13925
|
[15] |
F.P. Zhao, Y. Zhao, J. Wang, Q. Sun, K. Adair, S.M. Zhang, J. Luo, J.J. Li, W.H. Li, Y.P. Sun, X.N. Li, J.W. Liang, C.H. Wang, R.Y. Li, H. Huang, L. Zhang, S.Q. Zhao, S.G. Lu, and X.L. Sun, Tuning bifunctional interface for advanced sulfide-based all-solid-state batteries, Energy Storage Mater., 33(2020), p. 139. doi: 10.1016/j.ensm.2020.06.013
|
[16] |
J.B. Goodenough and Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater., 22(2010), No. 3, p. 587. doi: 10.1021/cm901452z
|
[17] |
S.D. Tao, J. Li, R. Hu, L.H. Wang, Z.X. Chi, and T.F. Li, 3Li2S–2MoS2 filled composite polymer PVDF-HFP/LiODFB electrolyte with excellent interface performance for lithium metal batteries, Appl. Surf. Sci., 536(2021), art. No. 147794. doi: 10.1016/j.apsusc.2020.147794
|
[18] |
J.R. Nair, F. Colò, A. Kazzazi, M. Moreno, D. Bresser, R.Y. Lin, F. Bella, G. Meligrana, S. Fantini, E. Simonetti, G.B. Appetecchi, S. Passerini, and C. Gerbaldi, Room temperature ionic liquid (RTIL)-based electrolyte cocktails for safe, high working potential Li-based polymer batteries, J. Power Sources, 412(2019), p. 398. doi: 10.1016/j.jpowsour.2018.11.061
|
[19] |
C.Z. Zhao, B.C. Zhao, C. Yan, X.Q. Zhang, J.Q. Huang, Y.F. Mo, X.X. Xu, H. Li, and Q. Zhang, Liquid phase therapy to solid electrolyte-electrode interface in solid-state Li metal batteries: A review, Energy Storage Mater., 24(2020), p. 75. doi: 10.1016/j.ensm.2019.07.026
|
[20] |
M. Singh and A.K. Singh, Space charge layer induced superionic conduction and charge transport behaviour of “alkali carbonates and tri-doped ceria nanocomposites” for LT-SOFCs applications, Ceram. Int., 47(2021), No. 1, p. 1218. doi: 10.1016/j.ceramint.2020.08.241
|
[21] |
C. Zheng, L.J. Li, K. Wang, C. Wang, J. Zhang, Y. Xia, H. Huang, C. Liang, Y.P. Gan, X.P. He, X.Y. Tao, and W.K. Zhang, Interfacial reactions in inorganic all-solid-state lithium batteries, Batteries Supercaps, 4(2021), No. 1, p. 8. doi: 10.1002/batt.202000147
|
[22] |
A. Hayashi, H. Muramatsu, T. Ohtomo, S. Hama, and M. Tatsumisago, Improved chemical stability and cyclability in Li2S–P2S5–P2O5–ZnO composite electrolytes for all-solid-state rechargeable lithium batteries, J. Alloys Compd., 591(2014), p. 247. doi: 10.1016/j.jallcom.2013.12.191
|
[23] |
S.K. Hu, G.H. Cheng, M.Y. Cheng, B.J. Hwang, and R. Santhanam, Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries, J. Power Sources, 188(2009), No. 2, p. 564. doi: 10.1016/j.jpowsour.2008.11.113
|
[24] |
A. Sakuda, A. Hayashi, and M. Tatsumisago, Electrochemical performance of all-solid-state lithium secondary batteries improved by the coating of Li2O–TiO2 films on LiCoO2 electrode, J. Power Sources, 195(2010), No. 2, p. 599. doi: 10.1016/j.jpowsour.2009.07.037
|
[25] |
S. Ito, S. Fujiki, T. Yamada, Y. Aihara, Y. Park, T.Y. Kim, S.W. Baek, J.M. Lee, S. Doo, and N. Machida, A rocking chair type all-solid-state lithium ion battery adopting Li2O–ZrO2 coated LiNi0.8Co0.15Al0.05O2 and a sulfide based electrolyte, J. Power Sources, 248(2014), p. 943. doi: 10.1016/j.jpowsour.2013.10.005
|
[26] |
J. Cho, Y.J. Kim, and B. Park, LiCoO2 cathode material that does not show a phase transition from hexagonal to monoclinic phase, J. Electrochem. Soc., 148(2001), No. 10, art. No. A1110. doi: 10.1149/1.1397772
|
[27] |
C.H. Jo, D.H. Cho, H.J. Noh, H. Yashiro, Y.K. Sun, and S.T. Myung, An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer, Nano Res., 8(2015), No. 5, p. 1464. doi: 10.1007/s12274-014-0631-8
|
[28] |
K. Sahni, M. Ashuri, Q.R. He, R. Sahore, I.D. Bloom, Y.Z. Liu, J.A. Kaduk, and L.L. Shaw, H3PO4 treatment to enhance the electrochemical properties of Li(Ni1/3Mn1/3Co1/3)O2 and Li(Ni0.5Mn0.3Co0.2)O2 cathodes, Electrochim. Acta, 301(2019), p. 8. doi: 10.1016/j.electacta.2019.01.153
|
[29] |
S.X. Deng, X. Li, Z.H. Ren, W.H. Li, J. Luo, J.W. Liang, J.N. Liang, M.N. Banis, M.S. Li, Y. Zhao, X.N. Li, C.H. Wang, Y.P. Sun, Q. Sun, R.Y. Li, Y.F. Hu, H. Huang, L. Zhang, S.G. Lu, J. Luo, and X.L. Sun, Dual-functional interfaces for highly stable Ni-rich layered cathodes in sulfide all-solid-state batteries, Energy Storage Mater., 27(2020), p. 117. doi: 10.1016/j.ensm.2020.01.009
|
[30] |
P.F. Yan, J.M. Zheng, J. Liu, B.Q. Wang, X.P. Cheng, Y.F. Zhang, X.L. Sun, C.M. Wang, and J.G. Zhang, Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries, Nat. Energy, 3(2018), No. 7, p. 600. doi: 10.1038/s41560-018-0191-3
|
[31] |
Z.S. Zhang, L. Zhang, Y.Y. Liu, H.Q. Wang, C. Yu, H. Zeng, L.M. Wang, and B. Xu, Interface-engineered Li7La3Zr2O12-based garnet solid electrolytes with suppressed Li-dendrite formation and enhanced electrochemical performance, ChemSusChem, 11(2018), No. 21, p. 3774. doi: 10.1002/cssc.201801756
|
[32] |
H.C. Gao, L.G. Xue, S. Xin, K. Park, and J.B. Goodenough, A plastic-crystal electrolyte interphase for all-solid-state sodium batteries, Angew. Chem. Int. Ed., 56(2017), No. 20, p. 5541. doi: 10.1002/anie.201702003
|
[33] |
Y.M. Zhou, F.R. Zhang, P.X. He, Y.H. Zhang, Y.Y. Sun, J.J. Xu, J.C. Hu, H.Y. Zhang, and X.D. Wu, Quasi-solid-state polymer plastic crystal electrolyte for subzero lithium-ion batteries, J. Energy Chem., 46(2020), p. 87. doi: 10.1016/j.jechem.2019.11.001
|
[34] |
P.J. Alarco, Y. Abu-Lebdeh, A. Abouimrane, and M. Armand, The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors, Nat. Mater., 3(2004), No. 7, p. 476. doi: 10.1038/nmat1158
|
[35] |
D. Zhou, Y.B. He, R.L. Liu, M. Liu, H.D. Du, B.H. Li, Q. Cai, Q.H. Yang, and F.Y. Kang, In situ synthesis of a hierarchical all-solid-state electrolyte based on nitrile materials for high-performance lithium-ion batteries, Adv. Energy Mater., 5(2015), No. 15, art. No. 1500353. doi: 10.1002/aenm.201500353
|
[36] |
X.L. Li, K. Qian, Y.B. He, C. Liu, D.C. An, Y.Y. Li, D. Zhou, Z.Q. Lin, B.H. Li, Q.H. Yang, and F.Y. Kang, A dual-functional gel-polymer electrolyte for lithium ion batteries with superior rate and safety performances, J. Mater. Chem. A, 5(2017), No. 35, p. 18888. doi: 10.1039/C7TA04415A
|
[37] |
D. Zhou, R.L. Liu, Y.B. He, F.Y. Li, M. Liu, B.H. Li, Q.H. Yang, Q. Cai, and F.Y. Kang, SiO2 hollow nanosphere-based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life, Adv. Energy Mater., 6(2016), No. 7, art. No. 1502214. doi: 10.1002/aenm.201502214
|
[38] |
J. Zhang, C. Zheng, J.T. Lou, Y. Xia, C. Liang, H. Huang, Y.P. Gan, X.Y. Tao, and W.K. Zhang, Poly(ethylene oxide) reinforced Li6PS5Cl composite solid electrolyte for all-solid-state lithium battery: Enhanced electrochemical performance, mechanical property and interfacial stability, J. Power Sources, 412(2019), p. 78. doi: 10.1016/j.jpowsour.2018.11.036
|
[39] |
J. Zhang, H.Y. Zhong, C. Zheng, Y. Xia, C. Liang, H. Huang, Y.P. Gan, X.Y. Tao, and W.K. Zhang, All-solid-state batteries with slurry coated LiNi0.8Co0.1Mn0.1O2 composite cathode and Li6PS5Cl electrolyte: Effect of binder content, J. Power Sources, 391(2018), p. 73. doi: 10.1016/j.jpowsour.2018.04.069
|
[40] |
Z.G. Xue, D. He, and X.L. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries, J. Mater. Chem. A, 3(2015), No. 38, p. 19218. doi: 10.1039/C5TA03471J
|
[41] |
C.H. Wang, Y.F. Yang, X.J. Liu, H. Zhong, H. Xu, Z.B. Xu, H.X. Shao, and F. Ding, Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries, ACS Appl. Mater. Interfaces, 9(2017), No. 15, p. 13694. doi: 10.1021/acsami.7b00336
|
[42] |
N. Wu, P.H. Chien, Y.M. Qian, Y.T. Li, H.H. Xu, N.S. Grundish, B.Y. Xu, H.B. Jin, Y.Y. Hu, G.H. Yu, and J.B. Goodenough, Enhanced surface interactions enable fast Li+ conduction in oxide/polymer composite electrolyte, Angew. Chem. Int. Ed., 59(2020), No. 10, p. 4131. doi: 10.1002/anie.201914478
|
[43] |
T. Asano, A. Sakai, S. Ouchi, M. Sakaida, A. Miyazaki, and S. Hasegawa, Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries, Adv. Mater., 30(2018), No. 44, art. No. 1803075. doi: 10.1002/adma.201803075
|
[44] |
C.H. Wang, J.W. Liang, M. Jiang, X.N. Li, S. Mukherjee, K. Adair, M. Zheng, Y. Zhao, F.P. Zhao, S.M. Zhang, R.Y. Li, H. Huang, S.Q. Zhao, L. Zhang, S.G. Lu, C.V. Singh, and X.L. Sun, Interface-assisted in situ growth of halide electrolytes eliminating interfacial challenges of all-inorganic solid-state batteries, Nano Energy, 76(2020), art. No. 105015. doi: 10.1016/j.nanoen.2020.105015
|
[45] |
D.H. Kim, D.Y. Oh, K.H. Park, Y.E. Choi, Y.J. Nam, H.A. Lee, S.M. Lee, and Y.S. Jung, Infiltration of solution-processable solid electrolytes into conventional Li-ion-battery electrodes for all-solid-state Li-ion batteries, Nano Lett., 17(2017), No. 5, p. 3013. doi: 10.1021/acs.nanolett.7b00330
|
[46] |
A. Miura, N.C. Rosero-Navarro, A. Sakuda, K. Tadanaga, N.H.H. Phuc, A. Matsuda, N. Machida, A. Hayashi, and M. Tatsumisago, Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery, Nat. Rev. Chem., 3(2019), No. 3, p. 189. doi: 10.1038/s41570-019-0078-2
|
[47] |
K.H. Park, Q. Bai, D.H. Kim, D.Y. Oh, Y.Z. Zhu, Y.F. Mo, and Y.S. Jung, Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries, Adv. Energy Mater., 8(2018), No. 18, art. No. 1800035. doi: 10.1002/aenm.201800035
|
[48] |
S.R. Chen, C.J. Niu, H. Lee, Q.Y. Li, L. Yu, W. Xu, J.G. Zhang, E.J. Dufek, M.S. Whittingham, S. Meng, J. Xiao, and J. Liu, Critical parameters for evaluating coin cells and pouch cells of rechargeable Li-metal batteries, Joule, 3(2019), No. 4, p. 1094. doi: 10.1016/j.joule.2019.02.004
|
[49] |
Y. Gao, Z.F. Yan, J.L. Gray, X. He, D.W. Wang, T.H. Chen, Q.Q. Huang, Y.C. Li, H.Y. Wang, S.H. Kim, T.E. Mallouk, and D.H. Wang, Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions, Nat. Mater., 18(2019), No. 4, p. 384. doi: 10.1038/s41563-019-0305-8
|
[50] |
S. Wenzel, D.A. Weber, T. Leichtweiss, M.R. Busche, J. Sann, and J. Janek, Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte, Solid State Ionics, 286(2016), p. 24. doi: 10.1016/j.ssi.2015.11.034
|
[51] |
X.Q. Zhang, X. Chen, L.P. Hou, B.Q. Li, X.B. Cheng, J.Q. Huang, and Q. Zhang, Regulating anions in the solvation sheath of lithium ions for stable lithium metal batteries, ACS Energy Lett., 4(2019), No. 2, p. 411. doi: 10.1021/acsenergylett.8b02376
|
[52] |
B.Z. Zheng, J.P. Zhu, H.C. Wang, M. Feng, E. Umeshbabu, Y.X. Li, Q.H. Wu, and Y. Yang, Stabilizing Li10SnP2S12/Li interface via an in situ formed solid electrolyte interphase layer, ACS Appl. Mater. Interfaces, 10(2018), No. 30, p. 25473. doi: 10.1021/acsami.8b08860
|
[53] |
W.D. Richards, L.J. Miara, Y. Wang, J.C. Kim, and G. Ceder, Interface stability in solid-state batteries, Chem. Mater., 28(2016), No. 1, p. 266. doi: 10.1021/acs.chemmater.5b04082
|
[54] |
J. Kasemchainan, S. Zekoll, D.S. Jolly, Z.Y. Ning, G.O. Hartley, J. Marrow, and P.G. Bruce, Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells, Nat. Mater., 18(2019), No. 10, p. 1105. doi: 10.1038/s41563-019-0438-9
|
[55] |
A. Masias, N. Felten, R. Garcia-Mendez, J. Wolfenstine, and J. Sakamoto, Elastic, plastic, and creep mechanical properties of lithium metal, J. Mater. Sci., 54(2019), No. 3, p. 2585. doi: 10.1007/s10853-018-2971-3
|
[56] |
J.M. Doux, H. Nguyen, D.H.S. Tan, A. Banerjee, X.F. Wang, E.A. Wu, C. Jo, H.D. Yang, and Y.S. Meng, Stack pressure considerations for room-temperature all-solid-state lithium metal batteries, Adv. Energy Mater., 10(2020), No. 1, art. No. 1903253. doi: 10.1002/aenm.201903253
|
[57] |
Y.X. Wang, T.J. Liu, and J. Kumar, Effect of pressure on lithium metal deposition and stripping against sulfide-based solid electrolytes, ACS Appl. Mater. Interfaces, 12(2020), No. 31, p. 34771. doi: 10.1021/acsami.0c06201
|
[58] |
C.W. Wang, Y.H. Gong, B.Y. Liu, K. Fu, Y.G. Yao, E. Hitz, Y.J. Li, J.Q. Dai, S.M. Xu, W. Luo, E.D. Wachsman, and L.B. Hu, Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes, Nano Lett., 17(2017), No. 1, p. 565. doi: 10.1021/acs.nanolett.6b04695
|
[59] |
X.G. Han, Y.H. Gong, K. Fu, X.F. He, G.T. Hitz, J.Q. Dai, A. Pearse, B.Y. Liu, H. Wang, G. Rubloff, Y.F. Mo, V. Thangadurai, E.D. Wachsman, and L.B. Hu, Negating interfacial impedance in garnet-based solid-state Li metal batteries, Nat. Mater., 16(2017), No. 5, p. 572. doi: 10.1038/nmat4821
|
[60] |
J.T. Lou, G.G. Wang, Y. Xia, C. Liang, H. Huang, Y.P. Gan, X.Y. Tao, J. Zhang, and W.K. Zhang, Achieving efficient and stable interface between metallic lithium and garnet-type solid electrolyte through a thin indium tin oxide interlayer, J. Power Sources, 448(2020), art. No. 227440. doi: 10.1016/j.jpowsour.2019.227440
|
[61] |
W.D. Zhou, S.F. Wang, Y.T. Li, S. Xin, A. Manthiram, and J.B. Goodenough, Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte, J. Am. Chem. Soc., 138(2016), No. 30, p. 9385. doi: 10.1021/jacs.6b05341
|
[62] |
A. Schwöbel, R. Hausbrand, and W. Jaegermann, Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission, Solid State Ionics, 273(2015), p. 51. doi: 10.1016/j.ssi.2014.10.017
|
[63] |
Y.Z. Zhu, X.F. He, and Y.F. Mo, Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations, ACS Appl. Mater. Interfaces, 7(2015), No. 42, p. 23685. doi: 10.1021/acsami.5b07517
|
[64] |
Y.Z. Zhu, X.F. He, and Y.F. Mo, Strategies based on nitride materials chemistry to stabilize Li metal anode, Adv. Sci., 4(2017), No. 8, art. No. 1600517. doi: 10.1002/advs.201600517
|
[65] |
A. Kızılaslan and H. Akbulut, Assembling all-solid-state lithium-sulfur batteries with Li3N-protected anodes, ChemPlusChem, 84(2019), No. 2, p. 183. doi: 10.1002/cplu.201800539
|
[66] |
A. Banerjee, H.M. Tang, X.F. Wang, J.H. Cheng, H. Nguyen, M.H. Zhang, D.H.S. Tan, T.A. Wynn, E.A. Wu, J.M. Doux, T.P. Wu, L. Ma, G.E. Sterbinsky, M.S. D’Souza, S.P. Ong, and Y.S. Meng, Revealing nanoscale solid–solid interfacial phenomena for long-life and high-energy all-solid-state batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 46, p. 43138. doi: 10.1021/acsami.9b13955
|
[67] |
J. Hassoun and B. Scrosati, Moving to a solid-state configuration: A valid approach to making lithium-sulfur batteries viable for practical applications, Adv. Mater., 22(2010), No. 45, p. 5198. doi: 10.1002/adma.201002584
|
[68] |
T. Swamy, X.W. Chen, and Y.M. Chiang, Electrochemical redox behavior of Li ion conducting sulfide solid electrolytes, Chem. Mater., 31(2019), No. 3, p. 707. doi: 10.1021/acs.chemmater.8b03420
|
[69] |
D.H.S. Tan, E.A. Wu, H. Nguyen, Z. Chen, M.A.T. Marple, J.M. Doux, X.F. Wang, H.D. Yang, A. Banerjee, and Y.S. Meng, Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte, ACS Energy Lett., 4(2019), No. 10, p. 2418. doi: 10.1021/acsenergylett.9b01693
|
[70] |
J. Zhang, L.J. Li, C. Zheng, Y. Xia, Y.P. Gan, H. Huang, C. Liang, X.P. He, X.Y. Tao, and W.K. Zhang, Silicon-doped argyrodite solid electrolyte Li6PS5I with improved ionic conductivity and interfacial compatibility for high-performance all-solid-state lithium batteries, ACS Appl. Mater. Interfaces, 12(2020), No. 37, p. 41538. doi: 10.1021/acsami.0c11683
|
[71] |
S.P. Culver, R. Koerver, T. Krauskopf, and W.G. Zeier, Designing ionic conductors: The interplay between structural phenomena and interfaces in thiophosphate-based solid-state batteries, Chem. Mater., 30(2018), No. 13, p. 4179. doi: 10.1021/acs.chemmater.8b01293
|
[72] |
F.D. Han, Y.Z. Zhu, X.F. He, Y.F. Mo, and C.S. Wang, Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes, Adv. Energy Mater., 6(2016), No. 8, art. No. 1501590. doi: 10.1002/aenm.201501590
|
[73] |
C.H. Wang, J.W. Liang, S. Hwang, X.N. Li, Y. Zhao, K. Adair, C.T. Zhao, X. Li, S.X. Deng, X.T. Lin, X.F. Yang, R.Y. Li, H. Huang, L. Zhang, S.G. Lu, D. Su, and X.L. Sun, Unveiling the critical role of interfacial ionic conductivity in all-solid-state lithium batteries, Nano Energy, 72(2020), art. No. 104686. doi: 10.1016/j.nanoen.2020.104686
|
[74] |
J. Kim, J. Kim, M. Avdeev, H. Yun, and S.J. Kim, LiTa2PO8: A fast lithium-ion conductor with new framework structure, J. Mater. Chem. A, 6(2018), No. 45, p. 22478. doi: 10.1039/C8TA09170F
|
[75] |
S.D. Dong, Y. Zhou, C.X. Hai, J.B. Zeng, Y.X. Sun, Y. Shen, X. Li, X.F. Ren, C. Sun, G.T. Zhang, and Z.W. Wu, Understanding electrochemical performance improvement with Nb doping in lithium-rich manganese-based cathode materials, J. Power Sources, 462(2020), art. No. 228185. doi: 10.1016/j.jpowsour.2020.228185
|
[76] |
Z.H. Cai, Y. Huang, W.C. Zhu, and R.G. Xiao, Increase in ionic conductivity of NASICON-type solid electrolyte Li1.5Al0.5Ti1.5(PO4)3 by Nb2O5 doping, Solid State Ionics, 354(2020), art. No. 115399. doi: 10.1016/j.ssi.2020.115399
|
[77] |
C.M. Chang, Y.I. Lee, S.H. Hong, and H.M. Park, Spark plasma sintering of LiTi2(PO4)3-based solid electrolytes, J. Am. Ceram. Soc., 88(2005), No. 7, p. 1803. doi: 10.1111/j.1551-2916.2005.00246.x
|
[78] |
X.F. Shang, H. Nemori, S. Mitsuoka, Y. Mastuda, Y. Takeda, O. Yamamoto, and N. Imanishi, High lithium-ion conducting NASICON-type Li1+x−yAlxNbyTi2−x−y(PO4)3 solid electrolytes, Solid State Ionics, 297(2016), p. 43. doi: 10.1016/j.ssi.2016.09.025
|
[79] |
Z. Zheng, X.D. Guo, Y.J. Zhong, W.B. Hua, C.H. Shen, S.L. Chou, and X.S. Yang, Host structural stabilization of Li1.232Mn0.615Ni0.154O2 through K-doping attempt: Toward superior electrochemical performances, Electrochim. Acta, 188(2016), p. 336. doi: 10.1016/j.electacta.2015.12.021
|
[80] |
R.P. Qing, J.L. Shi, D.D. Xiao, X.D. Zhang, Y.X. Yin, Y.B. Zhai, L. Gu, and Y.G. Guo, Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface Na+ doping, Adv. Energy Mater., 6(2016), No. 6, art. No. 1501914. doi: 10.1002/aenm.201501914
|
[81] |
J. Auvergniot, A. Cassel, D. Foix, V. Viallet, V. Seznec, and R. Dedryvère, Redox activity of argyrodite Li6PS5Cl electrolyte in all-solid-state Li-ion battery: An XPS study, Solid State Ionics, 300(2017), p. 78. doi: 10.1016/j.ssi.2016.11.029
|
[82] |
Y. Wang, W.D. Richards, S.P. Ong, L.J. Miara, J.C. Kim, Y.F. Mo, and G. Ceder, Design principles for solid-state lithium superionic conductors, Nat. Mater., 14(2015), No. 10, p. 1026. doi: 10.1038/nmat4369
|
[83] |
J.M. Whiteley, J.H. Woo, E.Y. Hu, K.W. Nam, and S.H. Lee, Empowering the lithium metal battery through a silicon-based superionic conductor, J. Electrochem. Soc., 161(2014), No. 12, p. A1812. doi: 10.1149/2.0501412jes
|
[84] |
S.C. Nagpure, B. Bhushan, and S.S. Babu, Multi-scale characterization studies of aged Li-ion large format cells for improved performance: An overview, J. Electrochem. Soc., 160(2013), No. 11, p. A2111. doi: 10.1149/2.001311jes
|
[85] |
M.M. Kabir and D.E. Demirocak, Degradation mechanisms in Li-ion batteries: A state-of-the-art review, Int. J. Energy Res., 41(2017), No. 14, p. 1963. doi: 10.1002/er.3762
|
[86] |
S. Ramdon, B. Bhushan, and S.C. Nagpure, In situ electrochemical studies of lithium-ion battery cathodes using atomic force microscopy, J. Power Sources, 249(2014), p. 373. doi: 10.1016/j.jpowsour.2013.10.099
|