Hua Han, An Liu, Caili Wang, Runquan Yang, Shuai Li, and Huaifa Wang, Flotation kinetics performance of different coal size fractions with nanobubbles, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1502-1510. https://doi.org/10.1007/s12613-021-2280-8
Cite this article as:
Hua Han, An Liu, Caili Wang, Runquan Yang, Shuai Li, and Huaifa Wang, Flotation kinetics performance of different coal size fractions with nanobubbles, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1502-1510. https://doi.org/10.1007/s12613-021-2280-8
Research Article

Flotation kinetics performance of different coal size fractions with nanobubbles

+ Author Affiliations
  • Corresponding author:

    Huaifa Wang    E-mail: wanghuaifa@tyut.edu.cn

  • Received: 13 November 2020Revised: 17 February 2021Accepted: 5 March 2021Available online: 6 March 2021
  • The flotation kinetics of different size fractions of conventional and nanobubble (NB) flotation were compared to investigate the effect of NBs on the flotation performance of various coal particle sizes. Six flotation kinetics models were selected to fit the flotation data, and NBs were observed on a hydrophobic surface under hydrodynamic cavitation by atomic force microscope scanning. Flotation results indicated that the best flotation performance of size fraction at −0.125+0.074 mm can be obtained either in conventional or NB flotation. NBs increase the combustible recovery of almost all the size fractions, but they increase the product ash content of −0.25+0.074 mm and reduce the product ash content of −0.045 mm at the same time. The first-order models can be used to fit the flotation data in conventional and NB flotation, and the classical first-order model is the most suitable one. NBs considerably enhance flotation rate on coarse size fraction (−0.5+0.25 mm) but decrease the flotation rate of the medium size (−0.25+0.074 mm). The improvement of flotation speed on fine coal particles (−0.074 mm) is probably the reason for the improved performance of raw sample flotation.
  • loading
  • [1]
    H. Gholami, B. Rezai, A. Hassanzadeh, A. Mehdilo, and M. Yarahmadi, Effect of microwave pretreatment on grinding and flotation kinetics of copper complex ore, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1887. doi: 10.1007/s12613-020-2106-0
    [2]
    G. Cheng, X.H. Gui, J.T. Liu, H.X. Xu, Y.T. Wang, Q.D. Zhang, and C.A. Song, Study on size and density distribution in fine coal flotation, Int. J. Coal Prep. Util., 33(2013), No. 3, p. 99. doi: 10.1080/19392699.2013.763232
    [3]
    J. Sokolović and S. Miskovic, The effect of particle size on coal flotation kinetics: A review, Physicochem. Probl. Miner. Process., 54(2018), No. 4, p. 1172. doi: 10.5277/PPMP18155
    [4]
    C. Ni, G.Y. Xie, M.G. Jin, Y.L. Peng, and W.C. Xia, The difference in flotation kinetics of various size fractions of bituminous coal between rougher and cleaner flotation processes, Powder Technol., 292(2016), p. 210. doi: 10.1016/j.powtec.2016.02.004
    [5]
    C. Ni, X.N. Bu, W.C. Xia, Y.L. Peng, and G.Y. Xie, Effect of slimes on the flotation recovery and kinetics of coal particles, Fuel, 220(2018), p. 159. doi: 10.1016/j.fuel.2018.02.003
    [6]
    E.C. Çilek, Estimation of flotation kinetic parameters by considering interactions of the operating variables, Miner. Eng., 17(2004), No. 1, p. 81. doi: 10.1016/j.mineng.2003.10.008
    [7]
    S. Ata, Phenomena in the froth phase of flotation—A review, Int. J. Miner. Process., 102-103(2012), p. 1. doi: 10.1016/j.minpro.2011.09.008
    [8]
    D. Tao, Role of bubble size in flotation of coarse and fine particles—A review, Sep. Sci. Technol., 39(2005), No. 4, p. 741. doi: 10.1081/SS-120028444
    [9]
    O. Bayat, M. Ucurum, and C. Poole, Effects of size distribution on flotation kinetics of Turkish sphalerite, Miner. Process. Extr. Metall., 113(2004), No. 1, p. 53. doi: 10.1179/037195504225004643
    [10]
    A.P. Chaves and A.S. Ruiz, Considerations on the kinetics of froth flotation of ultrafine coal contained in tailings, Int. J. Coal Prep. Util., 29(2009), No. 6, p. 289. doi: 10.1080/19392690903558371
    [11]
    G.H. Ai, X.L. Yang, and X.B. Li, Flotation characteristics and flotation kinetics of fine wolframite, Powder Technol., 305(2017), p. 377. doi: 10.1016/j.powtec.2016.09.068
    [12]
    E. Abkhoshk, M. Kor, and B. Rezai, A study on the effect of particle size on coal flotation kinetics using fuzzy logic, Expert Syst. Appl., 37(2010), No. 7, p. 5201. doi: 10.1016/j.eswa.2009.12.071
    [13]
    Z.A. Zhou, Z.H. Xu, J.A. Finch, J.H. Masliyah, and R.S. Chow, On the role of cavitation in particle collection in flotation—A critical review. II, Miner. Eng., 22(2009), No. 5, p. 419. doi: 10.1016/j.mineng.2008.12.010
    [14]
    M.M. Fan, D. Tao, R. Honaker, and Z.F. Luo, Nanobubble generation and its application in froth flotation (part I): Nanobubble generation and its effects on properties of microbubble and millimeter scale bubble solutions, Min. Sci. Technol. China, 20(2010), No. 1, p. 1. doi: 10.1016/S1674-5264(09)60154-X
    [15]
    W.G. Zhou, L.M. Ou, Q. Shi, Q.M. Feng, and H. Chen, Different flotation performance of ultrafine scheelite under two hydrodynamic cavitation modes, Minerals, 8(2018), No. 7, art. No. 264. doi: 10.3390/min8070264
    [16]
    W.G. Zhou, C.N. Wu, H.Z. Lv, B.L. Zhao, K. Liu, and L.M. Ou, Nanobubbles heterogeneous nucleation induced by temperature rise and its influence on minerals flotation, Appl. Surf. Sci., 508(2020), art. No. 145282. doi: 10.1016/j.apsusc.2020.145282
    [17]
    W.G. Zhou, J.J. Niu, W. Xiao, and L.M. Ou, Adsorption of bulk nanobubbles on the chemically surface-modified muscovite minerals, Ultrason. Sonochem, 51(2019), p. 31. doi: 10.1016/j.ultsonch.2018.10.021
    [18]
    S. Nazari, S.Z. Shafaei, M. Gharabaghi, R. Ahmadi, B. Shahbazi, and M.M. Fan, Effects of nanobubble and hydrodynamic parameters on coarse quartz flotation, Int. J. Min. Sci. Technol., 29(2019), No. 2, p. 289. doi: 10.1016/j.ijmst.2018.08.011
    [19]
    H. Oliveira, A. Azevedo, and J. Rubio, Nanobubbles generation in a high-rate hydrodynamic cavitation tube, Miner. Eng., 116(2018), p. 32. doi: 10.1016/j.mineng.2017.10.020
    [20]
    M.M. Zhang and J.R.T. Seddon, Nanobubble-nanoparticle interactions in bulk solutions, Langmuir, 32(2016), No. 43, p. 11280. doi: 10.1021/acs.langmuir.6b02419
    [21]
    A. Azevedo, H. Oliveira, and J. Rubio, Bulk nanobubbles in the mineral and environmental areas: Updating research and applications, Adv. Colloid Interfaces Sci., 271(2019), art. No. 101992. doi: 10.1016/j.cis.2019.101992
    [22]
    Y.W. Xing, X.H. Gui, and Y.J. Cao, The hydrophobic force for bubble-particle attachment in flotation—A brief review, Phys. Chem. Chem. Phys., 19(2017), No. 36, p. 24421. doi: 10.1039/C7CP03856A
    [23]
    M.M. Fan, D. Tao, Y.M. Zhao, and R. Honaker, Effect of nanobubbles on the flotation of different sizes of coal particle, Min. Metall. Proc., 30(2013), No. 3, p. 157. doi: 10.1007/BF03402262
    [24]
    F.F. Peng and X. Yu, Pico-nano bubble column flotation using static mixer-venturi tube for Pittsburgh No. 8 coal seam, Int. J. Min. Sci. Technol., 25(2015), No. 3, p. 347. doi: 10.1016/j.ijmst.2015.03.004
    [25]
    S. Nazari, S.Z. Shafaei, B. Shahbazi, and S.C. Chelgani, Study relationships between flotation variables and recovery of coarse particles in the absence and presence of nanobubble, Colloid. Surface A., 559(2018), p. 284. doi: 10.1016/j.colsurfa.2018.09.066
    [26]
    X.H. Zhang, D.Y.C. Chan, D.Y. Wang, and N. Maeda, Stability of interfacial nanobubbles, Langmuir, 29(2013), No. 4, p. 1017. doi: 10.1021/la303837c
    [27]
    G.H. Chang, Y.W. Xing, F.F. Zhang, Z.L. Yang, X.K. Liu, and X.H. Gui, Effect of nanobubbles on the flotation performance of oxidized coal, ACS Omega, 5(2020), No. 32, p. 20283. doi: 10.1021/acsomega.0c02154
    [28]
    X.W. Deng, B. Lv, G. Cheng, and Y. Lu, Mechanism of micro/nano-bubble formation and cavitation effect on bubbles size distribution in flotation, Physicochem. Probl. Miner. Process., 56(2020), No. 3, p. 504. doi: 10.37190/ppmp/119883
    [29]
    C.W. Li, M. Xu, Y.W. Xing, H.J. Zhang, and U.A. Peuker, Efficient separation of fine coal assisted by surface nanobubbles, Sep. Purif. Technol., 249(2020), art. No. 117163. doi: 10.1016/j.seppur.2020.117163
    [30]
    H. Ebrahimi, M. Karamoozian, and S.F. Saghravani, Interaction of applying stable micro-nano bubbles and ultrasonic irradiation in coal flotation, Int. J. Coal Prep. Util., 42(2022), p. 1548. doi: 10.1080/19392699.2020.1732947
    [31]
    Y.F. Wang, Z.C. Pan, X.M. Luo, W.Q. Qin, and F. Jiao, Effect of nanobubbles on adsorption of sodium oleate on calcite surface, Miner. Eng., 133(2019), p. 127. doi: 10.1016/j.mineng.2019.01.015
    [32]
    W.G. Zhou, H. Chen, L.M. Ou, and Q. Shi, Aggregation of ultra-fine scheelite particles induced by hydrodynamic cavitation, Int. J. Miner. Process., 157(2016), p. 236. doi: 10.1016/j.minpro.2016.11.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(7)

    Share Article

    Article Metrics

    Article Views(1260) PDF Downloads(97) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return