Shuai Liu, Sheng Xie,  and Qi Zhang, Multi-energy synergistic optimization in steelmaking process based on energy hub concept, Int. J. Miner. Metall. Mater., 28(2021), No. 8, pp. 1378-1386. https://doi.org/10.1007/s12613-021-2281-7
Cite this article as:
Shuai Liu, Sheng Xie,  and Qi Zhang, Multi-energy synergistic optimization in steelmaking process based on energy hub concept, Int. J. Miner. Metall. Mater., 28(2021), No. 8, pp. 1378-1386. https://doi.org/10.1007/s12613-021-2281-7
Research Article

Multi-energy synergistic optimization in steelmaking process based on energy hub concept

+ Author Affiliations
  • Corresponding author:

    Qi Zhang    E-mail: zhangqi@mail.neu.edu.cn

  • Received: 19 November 2020Revised: 14 March 2021Accepted: 16 March 2021Available online: 23 March 2021
  • The production process of iron and steel is accompanied by a large amount of energy production and consumption. Optimal scheduling and utilization of these energies within energy systems are crucial to realize a reduction in the cost, energy use, and CO2 emissions. However, it is difficult to model and schedule energy usage within steel works because different types of energy and devices are involved. The energy hub (EH), as a universal modeling frame, is widely used in multi-energy systems to improve its efficiency, flexibility, and reliability. This paper proposed an efficient multi-layer model based on the EH concept, which is designed to systematically model the energy system and schedule energy within steelworks to meet the energy demand. Besides, to simulate the actual working conditions of the energy devices, the method of fitting the curve is used to describe the efficiency of the energy devices. Moreover, to evaluate the applicability of the proposed model, a case study is conducted to minimize both the economic operation cost and CO2 emissions. The optimal results demonstrated that the model is suitable for energy systems within steel works. Further, the economic operation cost decreased by 3.41%, and CO2 emissions decreased by approximately 3.67%.

  • loading
  • [1]
    Z.B. Hu, D.F. He, K. Feng, P.Z. Liu, and Y.W. Jia, Optimal design model of the energy systems in iron and steel enterprises, Appl. Sci., 9(2019), No. 22, art. No. 4778. doi: 10.3390/app9224778
    [2]
    J.H. Kim, H.S. Yi, and C. Han, A novel MILP model for plantwide multiperiod optimization of byproduct gas supply system in the iron- and steel-making process, Chem. Eng. Res. Des., 81(2003), No. 8, p. 1015. doi: 10.1205/026387603322482248
    [3]
    B. Çiftçi, Potential Game Changers for the Future of Steelmaking, World Steel Association, 2017 [2020-10-11]. https://www.worldsteel.org/media-centre/blog/2017/blog-outlook-ferrous-scrap.html
    [4]
    P. Mancarella, MES (multi-energy systems): An overview of concepts and evaluation models, Energy, 65(2014), p. 1. doi: 10.1016/j.energy.2013.10.041
    [5]
    R.Y. Yin, Review on the study of metallurgical process engineering, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1253. doi: 10.1007/s12613-020-2220-z
    [6]
    H. Ahmadisedigh and L. Gosselin, Combined heating and cooling networks with waste heat recovery based on energy hub concept, Appl. Energy, 253(2019), art. No. 113495. doi: 10.1016/j.apenergy.2019.113495
    [7]
    M. Geidl, Integrated Modeling and Optimization of Multi-Carrier Energy Systems [Dissertation], Swiss Federal Institute of Technology in Zurich, Zurich, 2007.
    [8]
    H.N. Kong, E.S. Qi, H. Li, G. Li, and X. Zhang, An MILP model for optimization of byproduct gases in the integrated iron and steel plant, Appl. Energy, 87(2010), No. 7, p. 2156. doi: 10.1016/j.apenergy.2009.11.031
    [9]
    X.C. Zhao, H. Bai, X. Lu, Q. Shi, and J.H. Han, A MILP model concerning the optimisation of penalty factors for the short-term distribution of byproduct gases produced in the iron and steel making process, Appl. Energy, 148(2015), p. 142. doi: 10.1016/j.apenergy.2015.03.046
    [10]
    H.N. Kong, A green mixed integer linear programming model for optimization of byproduct gases in iron and steel industry, J. Iron Steel Res. Int., 22(2015), No. 8, p. 681. doi: 10.1016/S1006-706X(15)30057-1
    [11]
    Q. Zhang, H. Li, J.L. Ma, H.Y. Xu, B.Y. Yu, G. Wang, and S. Jiang, Dynamic forecasting and optimal scheduling of by-product gases in integrated iron and steel works, J. Iron Steel Res. Int., 26(2019), No. 5, p. 529. doi: 10.1007/s42243-019-00262-6
    [12]
    X.C. Zhao, H. Bai, Q. Shi, X. Lu, and Z.H. Zhang, Optimal scheduling of a byproduct gas system in a steel plant considering time-of-use electricity pricing, Appl. Energy, 195(2017), p. 100. doi: 10.1016/j.apenergy.2017.03.037
    [13]
    X.C. Zhao, H. Bai, and J.X. Hao, Research on the load shifting potential of on-site power plants with byproduct gasholders in steel enterprises under time-of-use power price, Energy Procedia, 142(2017), p. 2704. doi: 10.1016/j.egypro.2017.12.214
    [14]
    Q. Zhang, W. Ti, T. Du, and J.J. Cai, Coupling model of gas-steam-electricity and its application in steel works, CIESC J., 62(2011), No. 3, p. 753.
    [15]
    Z.Q. Wei, X.Q. Zhai, Q. Zhang, G. Yang, T. Du, and J.Q. Wei, A MINLP model for multi-period optimization considering couple of gas–steam–electricity and time of use electricity price in steel plant, Appl. Therm. Eng., 168(2020), art. No. 114834. doi: 10.1016/j.applthermaleng.2019.114834
    [16]
    Y.J. Zeng and Y.G. Sun, Multiperiod optimal planning of steam power system for steel plants under time-of-use power price, [in] Proceeding of the 11th World Congress on Intelligent Control and Automation, Shenyang, 2014, p. 4875..
    [17]
    Y.J. Zeng, X. Xiao, J. Li, L. Sun, C.A. Floudas, and H.C. Li, A novel multi-period mixed-integer linear optimization model for optimal distribution of byproduct gases, steam and power in an iron and steel plant, Energy, 143(2018), p. 881. doi: 10.1016/j.energy.2017.10.122
    [18]
    M. Mohammadi, Y. Noorollahi, B. Mohammadi-Ivatloo, and H. Yousefi, Energy hub: From a model to a concept - A review, Renewable Sustainable Energy Rev., 80(2017), p. 1512. doi: 10.1016/j.rser.2017.07.030
    [19]
    M. Mohammadi, Y. Noorollahi, B. Mohammadi-Ivatloo, M. Hosseinzadeh, H. Yousefi, and S.T. Khorasani, Optimal management of energy hubs and smart energy hubs - A review, Renewable Sustainable Energy Rev., 89(2018), p. 33. doi: 10.1016/j.rser.2018.02.035
    [20]
    H. Sadeghi, M. Rashidinejad, M. Moeini-Aghtaie, and A. Abdollahi, The energy hub: An extensive survey on the state-of-the-art, Appl. Therm. Eng., 161(2019), art. No. 114071. doi: 10.1016/j.applthermaleng.2019.114071
    [21]
    G. Mavromatidis, K. Orehounig, L.A. Bollinger, M. Hohmann, J.F. Marquant, S. Miglani, B. Morvaj, P. Murray, C. Waibel, D.H. Wang, and J. Carmeliet, Ten questions concerning modeling of distributed multi-energy systems, Build. Environ., 165(2019), art. No. 106372. doi: 10.1016/j.buildenv.2019.106372
    [22]
    Y. Wang, N. Zhang, Z.Y. Zhuo, C.Q. Kang, and D. Kirschen, Mixed-integer linear programming-based optimal configuration planning for energy hub: Starting from scratch, Appl. Energy, 210(2018), p. 1141. doi: 10.1016/j.apenergy.2017.08.114
    [23]
    X. Hu, S.K. Tang, H.Z. Cheng, L. Wang, Y.Q. Liu, and Y. Cai, Integrated modeling and planning of district multi-carrier energy systems, [in] 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, 2017, p. 1.
    [24]
    X.P. Zhang, M. Shahidehpour, A. Alabdulwahab, and A. Abusorrah, Optimal expansion planning of energy hub with multiple energy infrastructures, IEEE Trans. Smart Grid, 6(2015), No. 5, p. 2302. doi: 10.1109/TSG.2015.2390640
    [25]
    T.H. Liu, D.D. Zhang, S.Y. Wang, and T. Wu, Standardized modelling and economic optimization of multi-carrier energy systems considering energy storage and demand response, Energy Convers. Manage., 182(2019), p. 126. doi: 10.1016/j.enconman.2018.12.073
    [26]
    G.T. Ayele, P. Haurant, B. Laumert, and B. Lacarrière, An extended energy hub approach for load flow analysis of highly coupled district energy networks: Illustration with electricity and heating, Appl. Energy, 212(2018), p. 850. doi: 10.1016/j.apenergy.2017.12.090
    [27]
    S.D. Beigvand, H. Abdi, and M. La Scala, A general model for energy hub economic dispatch, Appl. Energy, 190(2017), p. 1090. doi: 10.1016/j.apenergy.2016.12.126
    [28]
    S.D. Beigvand, H. Abdi, and M. La Scala, Economic dispatch of multiple energy carriers, Energy, 138(2017), p. 861. doi: 10.1016/j.energy.2017.07.108
    [29]
    A. Maroufmashat, A. Elkamel, M. Fowler, S. Sattari, R. Roshandel, A. Hajimiragha, S. Walker, and E. Entchev, Modeling and optimization of a network of energy hubs to improve economic and emission considerations, Energy, 93(2015), p. 2546. doi: 10.1016/j.energy.2015.10.079
    [30]
    A. Bostan, M.S. Nazar, M. Shafie-Khah, and J.P.S. Catalão, Optimal scheduling of distribution systems considering multiple downward energy hubs and demand response programs, Energy, 190(2020), art. No. 116349. doi: 10.1016/j.energy.2019.116349
    [31]
    V. Davatgaran, M. Saniei, and S.S. Mortazavi, Smart distribution system management considering electrical and thermal demand response of energy hubs, Energy, 169(2019), p. 38. doi: 10.1016/j.energy.2018.12.005
    [32]
    M. Mostafavi Sani, A. Noorpoor, and M. Shafie-Pour Motlagh, Optimal model development of energy hub to supply water, heating and electrical demands of a cement factory, Energy, 177(2019), p. 574. doi: 10.1016/j.energy.2019.03.043
    [33]
    M. Ghorab, Energy hubs optimization for smart energy network system to minimize economic and environmental impact at Canadian community, Appl. Therm. Eng., 151(2019), p. 214. doi: 10.1016/j.applthermaleng.2019.01.107
    [34]
    Y.M. Zhang, Y.Q. Han, J.Y. Yan, and R.L. Chen, Thermodynamic analysis of compound cycle system for automotive waste heat recovery and air conditioning refrigeration, Energy Convers. Manage., 168(2018), p. 32. doi: 10.1016/j.enconman.2018.04.106
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(7)

    Share Article

    Article Metrics

    Article Views(1185) PDF Downloads(50) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return