Xiaofei Guo, Stefan Zaefferer, Fady Archie,  and Wolfgang Bleck, Hydrogen effect on the mechanical behaviour and microstructural features of a Fe–Mn–C twinning induced plasticity steel, Int. J. Miner. Metall. Mater., 28(2021), No. 5, pp. 835-846. https://doi.org/10.1007/s12613-021-2284-4
Cite this article as:
Xiaofei Guo, Stefan Zaefferer, Fady Archie,  and Wolfgang Bleck, Hydrogen effect on the mechanical behaviour and microstructural features of a Fe–Mn–C twinning induced plasticity steel, Int. J. Miner. Metall. Mater., 28(2021), No. 5, pp. 835-846. https://doi.org/10.1007/s12613-021-2284-4
Research ArticleOpen Access

Hydrogen effect on the mechanical behaviour and microstructural features of a Fe–Mn–C twinning induced plasticity steel

+ Author Affiliations
  • Corresponding author:

    Xiaofei Guo    E-mail: x.guo82@outlook.com

  • Received: 13 January 2021Revised: 19 March 2021Accepted: 22 March 2021Available online: 23 March 2021
  • The influences of hydrogen on the mechanical properties and the fracture behaviour of Fe–22Mn–0.6C twinning induced plasticity steel have been investigated by slow strain rate tests and fractographic analysis. The steel showed high susceptibility to hydrogen embrittlement, which led to 62.9% and 74.2% reduction in engineering strain with 3.1 and 14.4 ppm diffusive hydrogen, respectively. The fracture surfaces revealed a transition from ductile to brittle dominated fracture modes with the rising hydrogen contents. The underlying deformation and fracture mechanisms were further exploited by examining the hydrogen effects on the dislocation substructure, stacking fault probability, and twinning behaviour in pre-strained slow strain rate test specimens and notched tensile specimens using coupled electron channelling contrast imaging and electron backscatter diffraction techniques. The results reveal that the addition of hydrogen promotes planar dislocation structures, earlier nucleation of stacking faults, and deformation twinning within those grains which have tensile axis orientations close to<111>//rolling direction and<112>//rolling direction. The developed twin lamellae result in strain localization and micro-voids at grain boundaries and eventually lead to grain boundary decohesion.

  • loading
  • [1]
    B.C. De Cooman, K.-G. Chin, and J. Kim, High Mn TWIP steels for automotive applications, [in] M. Chiaberge, ed., New Trends and Developments in Automotive System Engineering, IntechOpen, Rijeka, 2011.
    [2]
    H. Idrissi, K. Renard, L. Ryelandt, D. Schryvers, and P.J. Jacques, On the mechanism of twin formation in Fe–Mn–C TWIP steels, Acta Mater., 58(2010), No. 7, p. 2464. doi: 10.1016/j.actamat.2009.12.032
    [3]
    C.L. Yang, Z.J. Zhang, P. Zhang, and Z.F. Zhang, The premature necking of twinning-induced plasticity steels, Acta Mater., 136(2017), p. 1. doi: 10.1016/j.actamat.2017.06.042
    [4]
    J.S. Kim, Y.H. Lee, D.L. Lee, K.-T. Park, and C.S. Lee, Microstructural influences on hydrogen delayed fracture of high strength steels, Mater. Sci. Eng. A, 505(2009), No. 1-2, p. 105. doi: 10.1016/j.msea.2008.11.040
    [5]
    M. Koyama, E. Akiyama, K. Tsuzaki, and D. Raabe, Hydrogen-assisted failure in a twinning-induced plasticity steel studied under in situ hydrogen charging by electron channeling contrast imaging, Acta Mater., 61(2013), No. 12, p. 4607. doi: 10.1016/j.actamat.2013.04.030
    [6]
    M. Koyama, E. Akiyama, Y.-K. Lee, D. Raabe, and K. Tsuzaki, Overview of hydrogen embrittlement in high-Mn steels, Int. J. Hydrogen Energy, 42(2017), No. 17, p. 12706. doi: 10.1016/j.ijhydene.2017.02.214
    [7]
    C.D. Beachem, A new model for hydrogen-assisted cracking (hydrogen “embrittlement”), Metall. Mater. Trans. B, 3(1972), No. 2, p. 441. doi: 10.1007/BF02642048
    [8]
    S.P. Lynch, Environmentally assisted cracking: Overview of evidence for an adsorption-induced localised-slip process, Acta Metall., 36(1988), No. 10, p. 2639. doi: 10.1016/0001-6160(88)90113-7
    [9]
    H.K. Birnbaum and P. Sofronis, Hydrogen-enhanced localized plasticity—A mechanism for hydrogen-related fracture, Mater. Sci. Eng. A, 176(1994), No. 1-2, p. 191. doi: 10.1016/0921-5093(94)90975-X
    [10]
    D.P. Abraham and C.J. Altstetter, Hydrogen-enhanced localization of plasticity in an austenitic stainless steel, Metall. Mater. Trans. A, 26(1995), No. 11, p. 2859. doi: 10.1007/BF02669644
    [11]
    C.J. McMahon, Hydrogen-induced intergranular fracture of steels, Eng. Fract. Mech., 68(2001), No. 6, p. 773. doi: 10.1016/S0013-7944(00)00124-7
    [12]
    I.M. Robertson, The effect of hydrogen on dislocation dynamics, Eng. Fract. Mech., 68(2001), No. 6, p. 671. doi: 10.1016/S0013-7944(01)00011-X
    [13]
    S. Lynch, Hydrogen embrittlement phenomena and mechanisms, Corros. Rev., 30(2012), No. 3-4, p. 105.
    [14]
    K.A. Nibur, D.F. Bahr, and B.P. Somerday, Hydrogen effects on dislocation activity in austenitic stainless steel, Acta Mater., 54(2006), No. 10, p. 2677. doi: 10.1016/j.actamat.2006.02.007
    [15]
    M. Nagumo and K. Takai, The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: Overview, Acta Mater., 165(2019), p. 722. doi: 10.1016/j.actamat.2018.12.013
    [16]
    Y.J. Gu and J.A. El-Awady, Quantifying the effect of hydrogen on dislocation dynamics: A three-dimensional discrete dislocation dynamics framework, J. Mech. Phys. Solids, 112(2018), p. 491. doi: 10.1016/j.jmps.2018.01.006
    [17]
    J.P. Chateau, D. Delafosse, and T. Magnin, Numerical simulations of hydrogen–dislocation interactions in fcc stainless steels. Part I: Hydrogen–dislocation interactions in bulk crystals, Acta Mater., 50(2002), No. 6, p. 1507. doi: 10.1016/S1359-6454(02)00008-3
    [18]
    A. Nagao, M. Dadfarnia, B.P. Somerday, P. Sofronis, and R.O. Ritchie, Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and “quasi-cleavage” fracture of lath martensitic steels, J. Mech. Phys. Solids, 112(2018), p. 403. doi: 10.1016/j.jmps.2017.12.016
    [19]
    P. Novak, R. Yuan, B.P. Somerday, P. Sofronis, and R.O. Ritchie, A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel, J. Mech. Phys. Solids, 58(2010), No. 2, p. 206. doi: 10.1016/j.jmps.2009.10.005
    [20]
    R. Kirchheim, Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background, Acta Mater., 55(2007), No. 15, p. 5129. doi: 10.1016/j.actamat.2007.05.047
    [21]
    A. Barnoush, M. Asgari, and R. Johnsen, Resolving the hydrogen effect on dislocation nucleation and mobility by electrochemical nanoindentation, Scripta Mater., 66(2012), No. 6, p. 414. doi: 10.1016/j.scriptamat.2011.12.004
    [22]
    A. Barnoush and H. Vehoff, Recent developments in the study of hydrogen embrittlement: Hydrogen effect on dislocation nucleation, Acta Mater., 58(2010), No. 16, p. 5274. doi: 10.1016/j.actamat.2010.05.057
    [23]
    D.P. Abraham and C.J. Altstetter, The effect of hydrogen on the yield and flow stress of an austenitic stainless steel, Metall. Mater. Trans. A, 26(1995), No. 11, p. 2849. doi: 10.1007/BF02669643
    [24]
    C. Verpoort, D.J. Duquette, N.S. Stoloff, and A. Neu, The influence of plastic deformation on the hydrogen embrittlement of nickel, Mater. Sci. Eng., 64(1984), No. 1, p. 135. doi: 10.1016/0025-5416(84)90080-6
    [25]
    J.A. Clum, The role of hydrogen in dislocation generation in iron alloys, Scripta Metall., 9(1975), No. 1, p. 51. doi: 10.1016/0036-9748(75)90145-3
    [26]
    M. Hatano, M. Fujinami, K. Arai, H. Fujii, and M. Nagumo, Hydrogen embrittlement of austenitic stainless steels revealed by deformation microstructures and strain-induced creation of vacancies, Acta Mater., 67(2014), p. 342. doi: 10.1016/j.actamat.2013.12.039
    [27]
    Z.D. Harris, S.K. Lawrence, D.L. Medlin, G. Guetard, J.T. Burns, and B.P. Somerday, Elucidating the contribution of mobile hydrogen-deformation interactions to hydrogen-induced intergranular cracking in polycrystalline nickel, Acta Mater., 158(2018), p. 180. doi: 10.1016/j.actamat.2018.07.043
    [28]
    O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier, High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships, Curr. Opin. Solid State Mater. Sci., 15(2011), No. 4, p. 141. doi: 10.1016/j.cossms.2011.04.002
    [29]
    I. Gutierrez-Urrutia and D. Raabe, Dislocation and twin substructure evolution during strain hardening of an Fe–22wt.% Mn–0.6wt.% C TWIP steel observed by electron channeling contrast imaging, Acta Mater., 59(2011), No. 16, p. 6449. doi: 10.1016/j.actamat.2011.07.009
    [30]
    A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck, Derivation and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels, Metall. Mater. Trans. A, 40(2009), No. 13, p. 3076. doi: 10.1007/s11661-009-0050-8
    [31]
    K.G. Chin, C.Y. Kang, S.Y. Shin, S. Hong, S. Lee, H.S. Kim, K.H. Kim, and N.J. Kim, Effects of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels, Mater. Sci. Eng. A, 528(2011), No. 6, p. 2922. doi: 10.1016/j.msea.2010.12.085
    [32]
    S.M. Lee, I.J. Park, J.G. Jung, and Y.K. Lee, The effect of Si on hydrogen embrittlement of Fe–18Mn–0.6C–xSi twinning-induced plasticity steels, Acta Mater., 103(2016), p. 264. doi: 10.1016/j.actamat.2015.10.015
    [33]
    I.J. Park, K.H. Jeong, J.G. Jung, C.S. Lee, and Y.K. Lee, The mechanism of enhanced resistance to the hydrogen delayed fracture in Al-added Fe–18Mn–0.6C twinning-induced plasticity steels, Int. J. Hydrogen Energy, 37(2012), No. 12, p. 9925. doi: 10.1016/j.ijhydene.2012.03.100
    [34]
    X.F. Guo, S. Zaefferer, F. Archie, and W. Bleck, Dislocation and twinning behaviors in high manganese steels in respect to hydrogen and aluminium alloying, Procedia Struct. Integrity, 13(2018), p. 1453. doi: 10.1016/j.prostr.2018.12.301
    [35]
    Y.S. Chun, K.T. Park, and C.S. Lee, Delayed static failure of twinning-induced plasticity steels, Scripta Mater., 66(2012), No. 12, p. 960. doi: 10.1016/j.scriptamat.2012.02.038
    [36]
    M. Koyama, E. Akiyama, and K. Tsuzaki, Hydrogen embrittlement in Al-added twinning-induced plasticity steels evaluated by tensile tests during hydrogen charging, ISIJ Int., 52(2012), No. 12, p. 2283. doi: 10.2355/isijinternational.52.2283
    [37]
    T. Dieudonné, L. Marchetti, M. Wery, J. Chêne, C. Allely, P. Cugy, and C.P. Scott, Role of copper and aluminum additions on the hydrogen embrittlement susceptibility of austenitic Fe–Mn–C TWIP steels, Corros. Sci., 82(2014), p. 218. doi: 10.1016/j.corsci.2014.01.022
    [38]
    N. Zan, H. Ding, X.F. Guo, Z.Y. Tang, and W. Bleck, Effects of grain size on hydrogen embrittlement in a Fe–22Mn–0.6C TWIP steel, Int. J. Hydrogen Energy, 40(2015), No. 33, p. 10687. doi: 10.1016/j.ijhydene.2015.06.112
    [39]
    Y.J. Kwon, S.P. Jung, B.J. Lee, and C.S. Lee, Grain boundary engineering approach to improve hydrogen embrittlement resistance in Fe–Mn–C TWIP steel, Int. J. Hydrogen Energy, 43(2018), No. 21, p. 10129. doi: 10.1016/j.ijhydene.2018.04.048
    [40]
    S. Zaefferer and N.N. Elhami, Theory and application of electron channelling contrast imaging under controlled diffraction conditions, Acta Mater., 75(2014), p. 20. doi: 10.1016/j.actamat.2014.04.018
    [41]
    A. Dumay, J.-P. Chateau, S. Allain, S. Migot, and O. Bouaziz, Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe–Mn–C steel, Mater. Sci. Eng. A, 483-484(2008), p. 184. doi: 10.1016/j.msea.2006.12.170
    [42]
    J. Lian, M. Sharaf, F. Archie, and S. Münstermann, A hybrid approach for modelling of plasticity and failure behaviour of advanced high-strength steel sheets, Int. J. Damage Mech., 22(2013), No. 2, p. 188. doi: 10.1177/1056789512439319
    [43]
    F. Ozturk, A. Polat, S. Toros, and R.C. Picu, Strain hardening and strain rate sensitivity behaviors of advanced high strength steels, J. Iron Steel Res. Int., 20(2013), No. 6, p. 68. doi: 10.1016/S1006-706X(13)60114-4
    [44]
    D.P. Escobar, T. Depover, L. Duprez, K. Verbeken, and M. Verhaege, Combined thermal desorption spectroscopy, differential scanning calorimetry, scanning electron microscopy and X-ray diffraction study of hydrogen trapping in cold deformed TRIP steel, Acta Mater., 60(2012), No. 6-7, p. 2593. doi: 10.1016/j.actamat.2012.01.026
    [45]
    X.F. Guo, Influences of Microstructure, Alloying Elements and Forming Parameters on Delayed Fracture in TRIP/TWIP-Aided Austenitic Steels [Dissertation], RWTH Aachen University, Aachen, 2012, p. 88.
    [46]
    D. Kuhlmann-Wilsdorf, Theory of plastic deformation — Properties of low energy dislocation structures, Mater. Sci. Eng. A, 113(1989), p. 1. doi: 10.1016/0921-5093(89)90290-6
    [47]
    S. Allain, J.-P. Chateau, D. Dahmoun, and O. Bouaziz, Modelling of mechanical twinning in a high manganese content austenitic steel, Mater. Sci. Eng. A, 387-389(2004), p. 272. doi: 10.1016/j.msea.2004.05.038
    [48]
    M. Wen, S. Fukuyama, and K. Yokogawa, Hydrogen-affected cross-slip process in fcc nickel, Phys. Rev. B, 69(2004), No. 17, art. No. 174108. doi: 10.1103/PhysRevB.69.174108
    [49]
    Y.Z. Tang and J.A. El-Awady, Atomistic simulations of the interactions of hydrogen with dislocations in fcc metals, Phys. Rev. B, 86(2012), No. 17, art. No. 174102. doi: 10.1103/PhysRevB.86.174102
    [50]
    D.K. Han, S.K. Lee, S.J. Noh, S.-K. Kim, and D.-W. Suh, Effect of aluminium on hydrogen permeation of high-manganese twinning-induced plasticity steel, Scripta Mater., 99(2015), p. 45. doi: 10.1016/j.scriptamat.2014.11.023
    [51]
    A.E. Pontini and J.D. Hermida, X-Ray diffraction measurement of the stacking fault energy reduction induced by hydrogen in an AISI 304 steel, Scripta Mater., 37(1997), No. 11, p. 1831. doi: 10.1016/S1359-6462(97)00332-1
    [52]
    J.D. Hermida and A. Roviglione, Stacking fault energy decrease in austenitic stainless steels induced by hydrogen pairs formation, Scripta Mater., 39(1998), No. 8, p. 1145. doi: 10.1016/S1359-6462(98)00285-1
    [53]
    J. von Appen, R. Dronskowski, A. Chakrabarty, T. Hickel, R. Spatschek, and J. Neugebauer, Impact of Mn on the solution enthalpy of hydrogen in austenitic Fe–Mn alloys: A first-principles study, J. Comput. Chem., 35(2014), No. 31, p. 2239. doi: 10.1002/jcc.23742
    [54]
    J.B. Cohen and J. Weertman, A dislocation model for twinning in f.c.c. metals, Acta Metall., 11(1963), No. 8, p. 996. doi: 10.1016/0001-6160(63)90074-9
    [55]
    D. Steinmetz, A Constitutive Model of Twin Nucleation and Deformation Twinning in High-Manganese Austenitic TWIP Steels [Dissertation], RWTH Aachen University, Aachen, 2013.
    [56]
    B. Bal, M. Koyama, G. Gerstein, H.J. Maier, and K. Tsuzaki, Effect of strain rate on hydrogen embrittlement susceptibility of twinning-induced plasticity steel pre-charged with high-pressure hydrogen gas, Int. J. Hydrogen Energy, 41(2016), No. 34, p. 15362. doi: 10.1016/j.ijhydene.2016.06.259
    [57]
    S. Evers and M. Rohwerder, The hydrogen electrode in the “dry”: A Kelvin probe approach to measuring hydrogen in metals, Electrochem. Commun., 24(2012), p. 85. doi: 10.1016/j.elecom.2012.08.019
    [58]
    D. Wang, X. Lu, D. Wan, X.F. Guo, R. Johnsen, Effect of hydrogen on the embrittlement susceptibility of Fe–22Mn–0.6C TWIP steel revealed by in-situ tensile tests, Mater. Sci. Eng. A, 802(2021), art. No. 140638. doi: 10.1016/j.msea.2020.140638
    [59]
    P. Müllner, Disclination models for deformation twinning, Solid State Phenom., 87(2002), p. 227. doi: 10.4028/www.scientific.net/SSP.87.227
    [60]
    D. Wang, X. Lu, Y. Deng, X.F. Guo, and A. Barnoush, Effect of hydrogen on nanomechanical properties in Fe–22Mn–0.6C TWIP steel revealed by in-situ electrochemical nanoindentation, Acta Mater., 166(2019), p. 618. doi: 10.1016/j.actamat.2018.12.055
    [61]
    M. Faccoli, G. Cornacchia, M. Gelfi, A. Panvini, and R. Roberti, Notch ductility of steels for automotive components, Eng. Fract. Mech., 127(2014), p. 181. doi: 10.1016/j.engfracmech.2014.06.007
    [62]
    J. Rehrl, K. Mraczek, A. Pichler, and E. Werner, Mechanical properties and fracture behavior of hydrogen charged AHSS/UHSS grades at high- and low strain rate tests, Mater. Sci. Eng. A, 590(2014), p. 360. doi: 10.1016/j.msea.2013.10.044
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Share Article

    Article Metrics

    Article Views(1590) PDF Downloads(85) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return