Dan Wang, Qun Ma, Kang-hui Tian, Chan-Qin Duan, Zhi-yuan Wang, and Yan-guo Liu, Ultrafine nano-scale Cu2Sb alloy confined in three-dimensional porous carbon as an anode for sodium-ion and potassium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1666-1674. https://doi.org/10.1007/s12613-021-2286-2
Cite this article as:
Dan Wang, Qun Ma, Kang-hui Tian, Chan-Qin Duan, Zhi-yuan Wang, and Yan-guo Liu, Ultrafine nano-scale Cu2Sb alloy confined in three-dimensional porous carbon as an anode for sodium-ion and potassium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1666-1674. https://doi.org/10.1007/s12613-021-2286-2
Research Article

Ultrafine nano-scale Cu2Sb alloy confined in three-dimensional porous carbon as an anode for sodium-ion and potassium-ion batteries

+ Author Affiliations
  • Corresponding authors:

    Zhi-yuan Wang    E-mail: zhiyuanwang@neuq.edu.cn

    Yan-guo Liu    E-mail: lyg@neuq.edu.cn

  • Received: 31 December 2020Revised: 25 March 2021Accepted: 26 March 2021Available online: 27 March 2021
  • Ultrafine nano-scale Cu2Sb alloy confined in a three-dimensional porous carbon was synthesized using NaCl template-assisted vacuum freeze-drying followed by high-temperature sintering and was evaluated as an anode for sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). The alloy exerts excellent cycling durability (the capacity can be maintained at 328.3 mA·h·g−1 after 100 cycles for SIBs and 260 mA·h·g−1 for PIBs) and rate capability (199 mA·h·g−1 at 5 A·g−1 for SIBs and 148 mA·h·g−1 at 5 A·g−1 for PIBs) because of the smooth electron transport path, fast Na/K ion diffusion rate, and restricted volume changes from the synergistic effect of three-dimensional porous carbon networks and the ultrafine bimetallic nanoalloy. This study provides an ingenious design route and a simple preparation method toward exploring a high-property electrode for K-ion and Na-ion batteries, and it also introduces broad application prospects for other electrochemical applications.

  • loading
  • [1]
    J.M. Chen, Y. Cheng, Q.B. Zhang, C. Luo, H.Y. Li, Y. Wu, H.H. Zhang, X. Wang, H.D. Liu, X. He, J.J. Han, D.L. Peng, M.L. Liu, and M.S. Wang, Designing and understanding the superior potassium storage performance of nitrogen/phosphorus co-doped hollow porous bowl-like carbon anodes, Adv. Funct. Mater., 31(2021), No. 1, art. No. 2007158. doi: 10.1002/adfm.202007158
    [2]
    B. Chen, D.L. Chao, E.Z. Liu, M. Jaroniec, N.Q. Zhao, and S.Z. Qiao, Transition metal dichalcogenides for alkali metal ion batteries: Engineering strategies at the atomic level, Energy Environ. Sci., 13(2020), No. 4, p. 1096. doi: 10.1039/C9EE03549D
    [3]
    J.C. Pramudita, D. Sehrawat, D. Goonetilleke, and N. Sharma, An initial review of the status of electrode materials for potassium-ion batteries, Adv. Energy Mater., 7(2017), No. 24, art. No. 1602911. doi: 10.1002/aenm.201602911
    [4]
    X.D. He, Z.H. Liu, J.Y. Liao, X. Ding, Q. Hu, L.N. Xiao, S. Wang, and C.H. Chen, A three-dimensional macroporous antimony@carbon composite as a high-performance anode material for potassium-ion batteries, J. Mater. Chem. A, 7(2019), No. 16, p. 9629. doi: 10.1039/C9TA01968E
    [5]
    J. Zheng, Y. Yang, X.L. Fan, G.B. Ji, X. Ji, H.Y. Wang, S. Hou, M.R. Zachariah, and C.S. Wang, Extremely stable antimony–carbon composite anodes for potassium-ion batteries, Energy Environ. Sci., 12(2019), No. 2, p. 615. doi: 10.1039/C8EE02836B
    [6]
    Y.L. An, Y. Tian, L.J. Ci, S.L. Xiong, J.K. Feng, and Y.T. Qian, Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries, ACS Nano, 12(2018), No. 12, p. 12932. doi: 10.1021/acsnano.8b08740
    [7]
    G.H. Wang, X.H. Xiong, Z.H. Lin, C.H. Yang, Z. Lin, and M.L. Liu, Sb/C composite as a high-performance anode for sodium ion batteries, Electrochim. Acta, 242(2017), p. 159. doi: 10.1016/j.electacta.2017.04.164
    [8]
    J. Qin, T.S. Wang, D.Y. Liu, E.Z. Liu, N.Q. Zhao, C.S. Shi, F. He, L.Y. Ma, and C.N. He, A top-down strategy toward SnSb in-plane nanoconfined 3D N-doped porous graphene composite microspheres for high performance Na-ion battery anode, Adv. Mater., 30(2018), No. 9, art. No. 1704670. doi: 10.1002/adma.201704670
    [9]
    P.X. Xiong, J.X. Wu, M.F. Zhou, and Y.H. Xu, Bismuth-antimony alloy nanoparticle@porous carbon nanosheet composite anode for high-performance potassium-ion batteries, ACS Nano, 14(2020), No. 1, p. 1018. doi: 10.1021/acsnano.9b08526
    [10]
    J. Han, K.J. Zhu, P. Liu, Y.C. Si, Y.J. Chai, and L.F. Jiao, N-doped CoSb@C nanofibers as a self-supporting anode for high-performance K-ion and Na-ion batteries, J. Mater. Chem. A, 7(2019), No. 44, p. 25268. doi: 10.1039/C9TA09643D
    [11]
    Y.P. Li, Q.B. Zhang, Y.F. Yuan, H.D. Liu, C.H. Yang, Z. Lin, and J. Lu, Surface amorphization of vanadium dioxide (B) for K-ion battery, Adv. Energy Mater., 10(2020), No. 23, art. No. 2000717. doi: 10.1002/aenm.202000717
    [12]
    X.F. Ge, S.H. Liu, M. Qiao, Y.C. Du, Y.F. Li, J.C. Bao, and X.S. Zhou, Enabling superior electrochemical properties for highly efficient potassium storage by impregnating ultrafine Sb nanocrystals within nanochannel-containing carbon nanofibers, Angew. Chem. Int. Ed., 58(2019), No. 41, p. 14578. doi: 10.1002/anie.201908918
    [13]
    M.C. Schulze, R.M. Belson, L.A. Kraynak, and A.L. Prieto, Electrodeposition of Sb/CNT composite films as anodes for Li- and Na-ion batteries, Energy Storage Mater., 25(2020), p. 572. doi: 10.1016/j.ensm.2019.09.025
    [14]
    X.W. Liu, M. Gao, H. Yang, X.W. Zhong, and Y. Yu, 2D sandwich-like nanosheets of ultrafine Sb nanoparticles anchored to graphene for high-efficiency sodium storage, Nano Res., 10(2017), No. 12, p. 4360. doi: 10.1007/s12274-017-1627-y
    [15]
    C. Nita, J. Fullenwarth, L. Monconduit, L. Vidal, and C. Matei Ghimbeu, Influence of carbon characteristics on Sb/carbon nanocomposites formation and performances in Na-ion batteries, Mater. Today Energy, 13(2019), p. 221. doi: 10.1016/j.mtener.2019.05.009
    [16]
    Q.Q. Yang, J. Zhou, G.Q. Zhang, C. Guo, M. Li, Y.C. Zhu, and Y.T. Qian, Sb nanoparticles uniformly dispersed in 1-D N-doped porous carbon as anodes for Li-ion and Na-ion batteries, J. Mater. Chem. A, 5(2017), No. 24, p. 12144. doi: 10.1039/C7TA03060F
    [17]
    Z.Y. Wang, K.Z. Dong, D. Wang, S.H. Luo, X. Liu, Y.G. Liu, Q. Wang, Y.H. Zhang, A.M. Hao, C.N. He, C.S. Shi, and N.Q. Zhao, Constructing N-Doped porous carbon confined FeSb alloy nanocomposite with Fe–N–C coordination as a universal anode for advanced Na/K-ion batteries, Chem. Eng. J., 384(2020), art. No. 123327. doi: 10.1016/j.cej.2019.123327
    [18]
    Z.Y. Wang, K.Z. Dong, D. Wang, S.H. Luo, Y.G. Liu, Q. Wang, Y.H. Zhang, A.M. Hao, C.S. Shi, and N.Q. Zhao, A nanosized SnSb alloy confined in N-doped 3D porous carbon coupled with ether-based electrolytes toward high-performance potassium-ion batteries, J. Mater. Chem. A, 7(2019), No. 23, p. 14309. doi: 10.1039/C9TA03851E
    [19]
    Z.Y. Wang, C.Q. Duan, D. Wang, K.Z. Dong, S.H. Luo, Y.G. Liu, Q. Wang, Y.H. Zhang, and A.M. Hao, BiSb@Bi2O3/SbOx encapsulated in porous carbon as anode materials for sodium/potassium-ion batteries with a high pseudocapacitive contribution, J. Colloid Interface Sci., 580(2020), p. 429. doi: 10.1016/j.jcis.2020.07.061
    [20]
    L. Baggetto, E. Allcorn, A. Manthiram, and G.M. Veith, Cu2Sb thin films as anode for Na-ion batteries, Electrochem. Commun., 27(2013), p. 168. doi: 10.1016/j.elecom.2012.11.030
    [21]
    Y.R. Lv, Y.H. Li, C. Han, J.F. Chen, Z.X. He, J. Zhu, L. Dai, W. Meng, and L. Wang, Application of porous biomass carbon materials in vanadium redox flow battery, J. Colloid Interface Sci., 566(2020), p. 434. doi: 10.1016/j.jcis.2020.01.118
    [22]
    H.L. Wang, W.H. Yu, N. Mao, J. Shi, and W. Liu, Effect of surface modification on high-surface-area carbon nanosheets anode in sodium ion battery, Microporous Mesoporous Mater., 227(2016), p. 1. doi: 10.1016/j.micromeso.2016.02.003
    [23]
    S.C. Luo, T.Y. Wang, H.Y. Lu, X.Q. Xu, G. Xue, N. Xu, Y. Wang, and D.S. Zhou, Ultrasmall SnO2 nanocrystals embedded in porous carbon as potassium ion battery anodes with long-term cycling performance, New J. Chem., 44(2020), No. 27, p. 11678. doi: 10.1039/D0NJ00323A
    [24]
    L.B. Wang, C.C. Wang, N. Zhang, F.J. Li, F.Y. Cheng, and J. Chen, High anode performance of in situ formed Cu2Sb nanoparticles integrated on Cu foil via replacement reaction for sodium-ion batteries, ACS Energy Lett., 2(2017), No. 1, p. 256. doi: 10.1021/acsenergylett.6b00649
    [25]
    J.J. Ye, G. Xia, Z.Q. Zheng, and C. Hu, Facile controlled synthesis of coral-like nanostructured Sb2O3@Sb anode materials for high performance sodium-ion batteries, Int. J. Hydrogen Energy, 45(2020), No. 16, p. 9969. doi: 10.1016/j.ijhydene.2020.01.141
    [26]
    R. Izquierdo, E. Sacher, and A. Yelon, X-ray photoelectron spectra of antimony oxides, Appl. Surf. Sci., 40(1989), No. 1-2, p. 175. doi: 10.1016/0169-4332(89)90173-6
    [27]
    L. Wu, X.H. Hu, J.F. Qian, F. Pei, F.Y. Wu, R.J. Mao, X.P. Ai, H.X. Yang, and Y.L. Cao, Sb–C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries, Energy Environ. Sci., 7(2014), No. 1, p. 323. doi: 10.1039/C3EE42944J
    [28]
    X.L. Fan, T. Gao, C. Luo, F. Wang, J.K. Hu, and C.S. Wang, Superior reversible tin phosphide-carbon spheres for sodium ion battery anode, Nano Energy, 38(2017), p. 350. doi: 10.1016/j.nanoen.2017.06.014
    [29]
    Z.M. Liu, X.Y. Yu, X.W. Lou, and U. Paik, Sb@C coaxial nanotubes as a superior long-life and high-rate anode for sodium ion batteries, Energy Environ. Sci., 9(2016), No. 7, p. 2314. doi: 10.1039/C6EE01501H
    [30]
    J. Zhu, C.Q. Shang, Z.Y. Wang, J.J. Zhang, Y. Liu, S. Gu, L.J. Zhou, H. Cheng, Y.Y. Gu, and Z.G. Lu, SnS/SnSb@C nanofibers with enhanced cycling stability via vulcanization as an anode for sodium-ion batteries, ChemElectroChem, 5(2018), No. 7, p. 1098. doi: 10.1002/celc.201701270
    [31]
    A.H. Jin, M.J. Kim, K.S. Lee, S.H. Yu, and Y.E. Sung, Spindle-like Fe7S8/N-doped carbon nanohybrids for high-performance sodium ion battery anodes, Nano Res., 12(2019), No. 3, p. 695. doi: 10.1007/s12274-019-2278-y
    [32]
    W.P. Song, J.L. Kan, H.L. Wang, X.C. Zhao, Y.L. Zheng, H. Zhang, L. Tao, M.H. Huang, W. Liu, and J. Shi, Nitrogen and sulfur co-doped mesoporous carbon for sodium ion batteries, ACS Appl. Nano Mater., 2(2019), No. 9, p. 5643. doi: 10.1021/acsanm.9b01178
    [33]
    Y. Liu and Z.Q. Gao, Synthesis of hierarchically porous nitrogen-doped carbon for sodium-ion batteries, ChemElectroChem, 4(2017), No. 5, p. 1059. doi: 10.1002/celc.201600834
    [34]
    D.D. Li, J.Z. Li, J.M. Cao, X.Y. Fu, L. Zhou, and W. Han, Highly flexible free-standing Sb/Sb2O3@N-doped carbon nanofiber membranes for sodium ion batteries with excellent stability, Sustainable Energy Fuels, 4(2020), No. 11, p. 5732. doi: 10.1039/D0SE01089H
    [35]
    W.X. Yang, J.H. Zhou, S. Wang, Z.C. Wang, F. Lv, W.S. Zhang, W.Y. Zhang, Q. Sun, and S.J. Guo, A three-dimensional carbon framework constructed by N/S co-doped graphene nanosheets with expanded interlayer spacing facilitates potassium ion storage, ACS Energy Lett., 5(2020), No. 5, p. 1653. doi: 10.1021/acsenergylett.0c00413
    [36]
    J. Hu, B. Wang, Q.Y. Yu, D. Zhang, Y.H. Zhang, Y. Li, and W.A. Wang, CoSe2/N-doped carbon porous nanoframe as an anode material for potassium-ion storage, Nanotechnology, 31(2020), No. 39, art. No. 395403. doi: 10.1088/1361-6528/ab9578
    [37]
    C.L. Gao, Q. Wang, S.H. Luo, Z.Y. Wang, Y.H. Zhang, Y.G. Liu, A.M. Hao, and R. Guo, High performance potassium-ion battery anode based on biomorphic N-doped carbon derived from walnut septum, J. Power Sources, 415(2019), p. 165. doi: 10.1016/j.jpowsour.2019.01.073
    [38]
    T.X. Wang, W.T. Guo, G. Wang, H. Wang, J.T. Bai, and B.B. Wang, Highly dispersed FeSe2 nanoparticles in porous carbon nanofibers as advanced anodes for sodium and potassium ion batteries, J. Alloys Compd., 834(2020), art. No. 155265. doi: 10.1016/j.jallcom.2020.155265
    [39]
    Z.L. Jian, S. Hwang, Z.F. Li, A.S. Hernandez, X.F. Wang, Z.Y. Xing, D. Su, and X.L. Ji, Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries, Adv. Funct. Mater., 27(2017), No. 26, art. No. 1700324. doi: 10.1002/adfm.201700324
    [40]
    S. Bao, S.H. Luo, S.X. Yan, Z.Y. Wang, Q. Wang, J. Feng, Y.L. Wang, and T.F. Yi, Nano-sized MoO2 spheres interspersed three-dimensional porous carbon composite as advanced anode for reversible sodium/potassium ion storage, Electrochim. Acta, 307(2019), p. 293. doi: 10.1016/j.electacta.2019.03.216
    [41]
    K.S. Huang, Z. Xing, L.C. Wang, X. Wu, W. Zhao, X.J. Qi, H. Wang, and Z.C. Ju, Direct synthesis of 3D hierarchically porous carbon/Sn composites via in situ generated NaCl crystals as templates for potassium-ion batteries anode, J. Mater. Chem. A, 6(2018), No. 2, p. 434. doi: 10.1039/C7TA08171E
    [42]
    C.H. Han, K. Han, X.P. Wang, C.Y. Wang, Q. Li, J.S. Meng, X.M. Xu, Q. He, W. Luo, L.M. Wu, and L.Q. Mai, Three-dimensional carbon network confined antimony nanoparticle anodes for high-capacity K-ion batteries, Nanoscale, 10(2018), No. 15, p. 6820. doi: 10.1039/C8NR00237A
    [43]
    S.H. Dong, C.X. Li, Z.Q. Li, L.Y. Zhang, and L.W. Yin, Mesoporous hollow Sb/ZnS@C core-shell heterostructures as anodes for high-performance sodium-ion batteries, Small, 14(2018), No. 16, art. No. 1704517. doi: 10.1002/smll.201704517
    [44]
    V. Gabaudan, R. Berthelot, L. Stievano, and L. Monconduit, Inside the alloy mechanism of Sb and Bi electrodes for K-ion batteries, J. Phys. Chem. C, 122(2018), No. 32, p. 18266. doi: 10.1021/acs.jpcc.8b04575
    [45]
    Y.Y. Yi, W. Zhao, Z.H. Zeng, C.H. Wei, C. Lu, Y.L. Shao, W.Y. Guo, S.X. Dou, and J.Y. Sun, ZIF-8@ZIF-67-derived nitrogen-doped porous carbon confined CoP polyhedron targeting superior potassium-ion storage, Small, 16(2020), No. 7, art. No. 1906566. doi: 10.1002/smll.201906566
    [46]
    D.L. Chao, C.R. Zhu, P.H. Yang, X.H. Xia, J.L. Liu, J. Wang, X.F. Fan, S.V. Savilov, J.Y. Lin, H.J. Fan, and Z.X. Shen, Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance, Nat. Commun., 7(2016), art. No. 12122. doi: 10.1038/ncomms12122
    [47]
    W.W. Zhong, J.D. Huang, S.Q. Liang, J. Liu, Y.J. Li, G.M. Cai, Y. Jiang, and J. Liu, New prelithiated V2O5 superstructure for lithium-ion batteries with long cycle life and high power, ACS Energy Lett., 5(2020), No. 1, p. 31. doi: 10.1021/acsenergylett.9b02048
    [48]
    V. Augustyn, P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci., 7(2014), No. 5, p. 1597. doi: 10.1039/c3ee44164d
    [49]
    T. Brezesinski, J. Wang, S.H. Tolbert, and B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors, Nat. Mater., 9(2010), No. 2, p. 146. doi: 10.1038/nmat2612
    [50]
    Z. Li, C.Z. Zhang, F. Han, F. Wang, F.Q. Zhang, W. Shen, C. Ye, X.K. Li, and J.S. Liu, Towards high-volumetric performance of Na/Li-ion batteries: A better anode material with molybdenum pentachloride–graphite intercalation compounds (MoCl5–GICs), J. Mater. Chem. A, 8(2020), No. 5, p. 2430. doi: 10.1039/C9TA12651A
    [51]
    C.Z. Zhang, F. Han, J.M. Ma, Z. Li, F.Q. Zhang, S.H. Xu, H.B. Liu, X.K. Li, J.S. Liu, and A.H. Lu, Fabrication of strong internal electric field ZnS/Fe9S10 heterostructures for highly efficient sodium ion storage, J. Mater. Chem. A, 7(2019), No. 19, p. 11771. doi: 10.1039/C9TA02388G
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(1430) PDF Downloads(43) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return