Huixiang Yu, Dexin Yang, Jiaming Zhang, Guangyuan Qiu, and Ni Zhang, Effect of Al content on the reaction between Fe−10Mn−xAl (x = 0.035wt%, 0.5wt%, 1wt%, and 2wt%) steel and CaO−SiO2−Al2O3−MgO slag, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 256-262. https://doi.org/10.1007/s12613-021-2298-y
Cite this article as:
Huixiang Yu, Dexin Yang, Jiaming Zhang, Guangyuan Qiu, and Ni Zhang, Effect of Al content on the reaction between Fe−10Mn−xAl (x = 0.035wt%, 0.5wt%, 1wt%, and 2wt%) steel and CaO−SiO2−Al2O3−MgO slag, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 256-262. https://doi.org/10.1007/s12613-021-2298-y
Research Article

Effect of Al content on the reaction between Fe−10Mn−xAl (x = 0.035wt%, 0.5wt%, 1wt%, and 2wt%) steel and CaO−SiO2−Al2O3−MgO slag

+ Author Affiliations
  • Corresponding author:

    Huixiang Yu    E-mail: yuhuixiang@ustb.edu.cn

  • Received: 5 February 2021Revised: 25 April 2021Accepted: 26 April 2021Available online: 28 April 2021
  • The effect of Al content (0.035wt%, 0.5wt%, 1wt%, and 2wt%) on the composition change of steel and slag as well as inclusion transformation of high manganese steel after it has equilibrated with CaO−SiO2−Al2O3−MgO slag was studied using the method of slag/steel reaction. The experimental results showed that as the initial content of Al increased from 0.035wt% to 2wt%, Al gradually replaced Mn to react with SiO2 in slag to avoid the loss of Mn due to the reaction; this process caused both Al2O3 in slag and Si in steel to increase while SiO2 and MnO in slag to reduce. In addition, the type of inclusions also evolved as the initial Al content increased. The evolution route of inclusions was MnO → MnO−Al2O3−MgO → MgO → MnO−CaO−Al2O3−MgO and MnO−CaO−MgO. The shape of inclusions evolved from spherical to irregular, became faceted, and finally transformed to spherical. The average size of inclusions presented a trend that was increasing first and then decreasing. The transformation mechanism of inclusions was explored. As the initial content of Al increased, Mg and Ca were reduced from top slag into molten steel in sequence, which consequently caused the transformation of inclusions.

  • loading
  • [1]
    P. Von Schweinichen, Z.Y. Chen, D. Senk, and A. Lob, Effect of different casting parameters on the cleanliness of high manganese steel ingots compared to high carbon steel, Metall. Mater. Trans. A, 44(2013), No. 12, p. 5416. doi: 10.1007/s11661-013-1949-7
    [2]
    O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer, High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development — properties — application, Int. J. Plast., 16(2000), No. 10-11, p. 1391. doi: 10.1016/S0749-6419(00)00015-2
    [3]
    S.W. Hwang, J.H. Ji, and K.T. Park, Effects of Al addition on high strain rate deformation of fully austenitic high Mn steels, Mater. Sci. Eng. A, 528(2011), No. 24, p. 7267. doi: 10.1016/j.msea.2011.06.020
    [4]
    Y.J. Wang, S. Zhao, R.B. Song, and B. Hu, Hot ductility behavior of a Fe–0.3C–9Mn–2Al medium Mn steel, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 422. doi: 10.1007/s12613-020-2206-x
    [5]
    A. Dumay, J.P. Chateau, S. Allain, S. Migot, and O. Bouaziz, Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe–Mn–C steel, Mater. Sci. Eng. A, 483-484(2008), p. 184. doi: 10.1016/j.msea.2006.12.170
    [6]
    Y.J. Sutou, N. Kamiya, R. Umino, I. Ohnuma, and K. Ishida, High-strength Fe–20Mn–Al–C-based alloys with low density, ISIJ Int., 50(2010), No. 6, p. 893. doi: 10.2355/isijinternational.50.893
    [7]
    Z.J. Xie, C.J. Shang, X.L. Wang, X.M. Wang, G. Han, and R.D.K. Misra, Recent progress in third-generation low alloy steels developed under M3 microstructure control, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 1. doi: 10.1007/s12613-019-1939-x
    [8]
    M. Koyama, T. Sawaguchi, K. Ogawa, T. Kikuchi, and M. Murakami, The effects of thermomechanical training treatment on the deformation characteristics of Fe–Mn–Si–Al alloys, Mater. Sci. Eng. A, 497(2008), No. 1-2, p. 353. doi: 10.1016/j.msea.2008.07.026
    [9]
    K.G. Chin, C.Y. Kang, S.Y. Shin, S. Hong, S. Lee, H.S. Kim, K.H. Kim, and N.J. Kim, Effects of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels, Mater. Sci. Eng. A, 528(2011), No. 6, p. 2922. doi: 10.1016/j.msea.2010.12.085
    [10]
    J. Kim, S.J. Lee, and B.C. De Cooman, Effect of Al on the stacking fault energy of Fe–18Mn–0.6C twinning–induced plasticity, Scripta Mater., 65(2011), No. 4, p. 363. doi: 10.1016/j.scriptamat.2011.05.014
    [11]
    A. Grajcar, U. Galisz, and L. Bulkowski, Non-metallic inclusions in high manganese austenitic alloys, Arch. Mater. Sci. Eng., 50(2011), No. 1, p. 21.
    [12]
    G. Gigacher, W. Krieger, P.R. Scheller, and C. Thomser, Non-metallic inclusions in high-manganese-alloy steels, Steel Res. Int., 76(2005), No. 9, p. 644. doi: 10.1002/srin.200506069
    [13]
    J.H. Park, D.J. Kim, and D.J. Min, Characterization of nonmetallic inclusions in high-manganese and aluminum-alloyed austenitic steels, Metall. Mater. Trans. A, 43(2012), No. 7, p. 2316. doi: 10.1007/s11661-012-1088-6
    [14]
    X.L. Xin, J. Yang, Y.N. Wang, R.Z. Wang, W.L. Wang, H.G. Zheng, and H.T. Hu, Effects of Al content on non-metallic inclusion evolution in Fe–16Mn–xAl–0.6C high Mn TWIP steel, Ironmaking Steelmaking, 43(2016), No. 3, p. 234. doi: 10.1179/1743281215Y.0000000041
    [15]
    S.C. Chen, H.X. Ye, and X.Q. Lin, Effect of rare earth and alloying elements on the thermal conductivity of austenitic medium manganese steel, Int. J. Miner. Metall. Mater., 24(2017), No. 6, p. 670. doi: 10.1007/s12613-017-1449-7
    [16]
    C.L. Zhuang, J.H. Liu, Z.L. Mi, H.T. Jiang, D. Tang, and G.X. Wang, Non-metallic inclusions in TWIP steel, Steel Res. Int., 85(2014), No. 10, p. 1432. doi: 10.1002/srin.201300354
    [17]
    M. Peymandar, S. Schmuck, P. von Schweinichen, and D. Senk, Interfacial reactions between slag and melt in the new world of high manganese steels, [in] Proc. of the TMS2014 Annual Meeting, San Diego, 2014, p. 291.
    [18]
    H.X. Yu, D.X. Yang, M.M. Li, and N. Zhang, Effects of Al addition on the reaction between high-manganese steel and CaO–SiO2–Al2O3–MgO slag, Steel Res. Int., 91(2020), No. 10, art. No. 2000143. doi: 10.1002/srin.202000143
    [19]
    D.J. Kim and J.H. Park, Interfacial reaction between CaO–SiO2–MgO–Al2O3 flux and Fe–xMn–yAl (x = 10 and 20 mass pct, y = 1, 3, and 6 mass pct) Steel at 1873 K (1600°C), Metall. Mater. Trans. B, 43(2012), No. 4, p. 875. doi: 10.1007/s11663-012-9667-x
    [20]
    Y.B. Kang, M.S. Kim, S.W. Lee, J.W. Cho, M.S. Park, and H.G. Lee, A reaction between high Mn–high Al steel and CaO–SiO2–type molten mold flux: Part II. Reaction mechanism, interface morphology, and Al2O3 accumulation in molten mold flux, Metall. Mater. Trans. B, 44(2013), No. 2, p. 309. doi: 10.1007/s11663-012-9769-5
    [21]
    J. Park, S. Sridhar, and R.J. Fruehan, Kinetics of reduction of SiO2 in SiO2–Al2O3–CaO slags by Al in Fe–Al(–Si) melts, Metall. Mater. Trans. B, 45(2014), No. 4, p. 1380. doi: 10.1007/s11663-014-0076-1
    [22]
    H.X. Yu, D.X. Yang, M.M. Li, and M. Pan, Metallurgical characteristics of refining slag used for high manganese steel, Metall. Res. Technol., 116(2019), No. 6, art. No. 620. doi: 10.1051/metal/2019050
    [23]
    Z.Y. Deng, L. Chen, G.D. Song, and M.Y. Zhu, Formation and evolution of non-metallic inclusions in Ti-bearing Al-killed steel during secondary refining process, Metall. Mater. Trans. B, 51(2020), No. 1, p. 173. doi: 10.1007/s11663-019-01728-4
    [24]
    H. Todoroki and K. Mizuno, Variation of inclusion composition in 304 stainless steel deoxidized with aluminum, Iron Steelmaker, 30(2003), No. 3, p. 60.
    [25]
    Y.Q. Ji, C.Y. Liu, Y. Lu, H.X. Yu, F.X. Huang, and X.H. Wang, Effects of FeO and CaO/Al2O3 ratio in slag on the cleanliness of Al-killed steel, Metall. Mater. Trans. B, 49(2018), No. 6, p. 3127. doi: 10.1007/s11663-018-1397-2
    [26]
    M. Hino and K. Ito, Thermodynamic Data for Steelmaking, Tohoku University Press, Sendai, 2010, p. 24.
    [27]
    K. Fujii, T. Nagasaka, and M. Hino, Activities of the constituents in spinel solid solution and free energies of formation of MgO, MgO Al2O3, ISIJ Int., 40(2000), No. 11, p. 1059. doi: 10.2355/isijinternational.40.1059
    [28]
    H. Todoroki and K. Mizuno, Effect of silica in slag on inclusion compositions in 304 stainless steel deoxidized with aluminum, ISIJ Int., 44(2004), No. 8, p. 1350. doi: 10.2355/isijinternational.44.1350
    [29]
    M. Jiang, X.H. Wang, B. Chen, and W.J. Wang, Laboratory study on evolution mechanisms of non-metallic inclusions in high strength alloyed steel refined by high basicity slag, ISIJ Int., 50(2010), No. 1, p. 95. doi: 10.2355/isijinternational.50.95
    [30]
    H.X. Yu, X.H. Wang, J. Zhang, and W.J. Wang, Characteristics and metallurgical effects of medium basicity refining slag on low melting temperature inclusions, J. Iron Steel Res. Int., 22(2015), No. 7, p. 573. doi: 10.1016/S1006-706X(15)30042-X
    [31]
    Y. Li, C.Y. Chen, G.Q. Qin, Z.H. Jiang, M. Sun, and K. Chen, Influence of crucible material on inclusions in 95Cr saw-wire steel deoxidized by Si-Mn, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1083. doi: 10.1007/s12613-019-1957-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(702) PDF Downloads(62) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return