Lejun Zhou, Hao Luo, Wanlin Wang, Houfa Wu, Erzhuo Gao, You Zhou, and Daoyuan Huang, Wetting behavior of CaO–Al2O3-based mold flux with various BaO and MgO contents on the steel substrate, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1179-1185. https://doi.org/10.1007/s12613-021-2300-8
Cite this article as:
Lejun Zhou, Hao Luo, Wanlin Wang, Houfa Wu, Erzhuo Gao, You Zhou, and Daoyuan Huang, Wetting behavior of CaO–Al2O3-based mold flux with various BaO and MgO contents on the steel substrate, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1179-1185. https://doi.org/10.1007/s12613-021-2300-8
Research Article

Wetting behavior of CaO–Al2O3-based mold flux with various BaO and MgO contents on the steel substrate

+ Author Affiliations
  • Corresponding author:

    Wanlin Wang    E-mail: wanlin.wang@gmail.com

  • Received: 19 January 2021Revised: 16 April 2021Accepted: 7 May 2021Available online: 8 May 2021
  • The interfacial phenomena in mold have a great impact on the smooth operation of continuous casting process and the quality of the casting product. In this paper, the wetting behavior of CaO–Al2O3-based mold flux with different BaO and MgO contents was studied. The results showed that the contact angle between molten flux and interstitial free (IF) steel substrate increased from 62.4° to 74.5° with the increase of BaO content from 3wt% to 7wt%, while it decreased from 62.4° to 51.3° with the increase of MgO content from 3wt% to 7wt%. The interfacial tension also increased from 1630.3 to 1740.8 mN/m when the BaO content increased, but it reduced from 1630.3 to 1539.7 mN/m with the addition of MgO. The changes of contact angle and interfacial tension were mainly due to the fact that the bridging oxygen (O0) at the interface was broken into non-bridging oxygen (O) and free oxygen (O2−) by MgO. However, more O and O2− connected into O0 when BaO was added, since the charge compensation effect of BaO was so stronger that it offset the effect of providing O2−.
  • loading
  • [1]
    J. Yang, J.Q. Zhang, O. Ostrovski, C. Zhang, and D.X. Cai, Effects of B2O3 on crystallization, structure, and heat transfer of CaO–Al2O3-based mold fluxes, Metall. Mater. Trans. B, 50(2019), No. 1, p. 291. doi: 10.1007/s11663-018-1467-5
    [2]
    C.B. Shi, M.D. Seo, J.W. Cho, and S.H. Kim, Crystallization characteristics of CaO–Al2O3-based mold flux and their effects on in-mold performance during high-aluminum TRIP steels continuous casting, Metall. Mater. Trans. B, 45(2014), No. 3, p. 1081. doi: 10.1007/s11663-014-0034-y
    [3]
    Z.Y. Cai, B. Song, L.F. Li, Z. Liu, and X.K. Cui, Effect of CeO2 on heat transfer and crystallization behavior of rare earth alloy steel mold fluxes, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 565. doi: 10.1007/s12613-019-1765-1
    [4]
    J. Yang, H.J. Cui, J.Q. Zhang, O. Ostrovski, C. Zhang, and D.X. Cai, Interfacial reaction between high-Al steel and CaO–Al2O3-based mold fluxes with different CaO/Al2O3 ratios at 1773 K (1500 °C), Metall. Mater. Trans. B, 50(2019), No. 6, p. 2636. doi: 10.1007/s11663-019-01667-0
    [5]
    Y. Nakamura, T. Ando, K. Kurata, and M. Ikeda, Effect of chemical composition of mold powder on the erosion of submerged nozzles for continuous casting of steel, Trans. Iron Steel Inst. Jpn., 26(1986), No. 12, p. 1052. doi: 10.2355/isijinternational1966.26.1052
    [6]
    J. Yang, J.Q. Zhang, O. Ostrovski, Y. Sasaki, C. Zhang, and D.X. Cai, Dynamic wetting of high-Al steel by CaO–SiO2- and CaO–Al2O3-based mold fluxes, Metall. Mater. Trans. B, 50(2019), No. 5, p. 2175. doi: 10.1007/s11663-019-01643-8
    [7]
    P. Fei, Y. Min, C.J. Liu, and M.F. Jiang, Effect of continuous casting speed on mold surface flow and the related near-surface distribution of non-metallic inclusions, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 186. doi: 10.1007/s12613-019-1723-y
    [8]
    L.J. Zhou, Z.H. Pan, W.L. Wang, and J.Y. Chen, Study of the Ni–Cr–Fe-based alloy casting process using a mold simulator technique, Steel Res. Int., 91(2020), No. 3, art. No. 1900503. doi: 10.1002/srin.201900503
    [9]
    A. Sharan and A.W. Cramb, Surface tension and wettability studies of liquid Fe–Ni–O alloys, Metall. Mater. Trans. B, 28(1997), No. 3, p. 465. doi: 10.1007/s11663-997-0113-4
    [10]
    J. Lee and K. Morita, Evaluation of surface tension and adsorption for liquid Fe–S alloys, ISIJ Int., 42(2002), No. 6, p. 588. doi: 10.2355/isijinternational.42.588
    [11]
    K. Nakashima and K. Mori, Interfacial properties of liquid iron alloys and liquid slags relating to iron- and steel-making processes, ISIJ Int., 32(1992), No. 1, p. 11. doi: 10.2355/isijinternational.32.11
    [12]
    E.J. Jung, W. Kim, I. Sohn, and D.J. Min, A study on the interfacial tension between solid iron and CaO–SiO2–MO system, J. Mater. Sci., 45(2010), No. 8, p. 2023. doi: 10.1007/s10853-009-3946-1
    [13]
    W.L. Wang, J.W. Li, L.J. Zhou, and J. Yang, Effect of MnO content on the interfacial property of mold flux and steel, Met. Mater. Int., 22(2016), No. 4, p. 700. doi: 10.1007/s12540-016-5670-0
    [14]
    L.J. Zhou, J.W. Li, W.L. Wang, and I. Sohn, Wetting behavior of mold flux droplet on steel substrate with or without interfacial reaction, Metall. Mater. Trans. B, 48(2017), No. 4, p. 1943. doi: 10.1007/s11663-017-0972-2
    [15]
    W.L. Wang, H.Q. Shao, L.J. Zhou, H. Luo, and H.F. Wu, Rheological behavior of the CaO–Al2O3-based mold fluxes with different Na2O contents, Ceram. Int., 46(2020), No. 17, p. 26880. doi: 10.1016/j.ceramint.2020.07.164
    [16]
    W.L. Wang, S.F. Dai, L.J. Zhou, J.K. Zhang, W.G. Tian, and J.L. Xu, Viscosity and structure of MgO–SiO2-based slag melt with varying B2O3 content, Ceram. Int., 46(2020), No. 3, p. 3631. doi: 10.1016/j.ceramint.2019.10.082
    [17]
    L.J. Zhou, Z.H. Pan, W.L. Wang, and J.Y. Chen, Optimization of the interfacial properties between mold flux and TiN substrate through the regulation of B2O3, ISIJ Int., 60(2020), No. 12, p. 2838. doi: 10.2355/isijinternational.ISIJINT-2020-184
    [18]
    L.J. Zhou, Z.H. Pan, W.L. Wang, J.Y. Chen, L.W. Xue, T.S. Zhang, and L. Zhang, Interfacial interactions between inclusions comprising TiO2 or TiN and the mold flux during the casting of titanium-stabilized stainless steel, Metall. Mater. Trans. B, 51(2020), No. 1, p. 85. doi: 10.1007/s11663-019-01746-2
    [19]
    R. Brooks, I. Egry, S. Seetharaman, and D. Grant, Reliable data for high-temperature viscosity and surface tension: Results from a European project, High Temp.-High Pressures, 33(2001), No. 6, p. 631. doi: 10.1068/htwu323
    [20]
    M. Hanao, T. Tanaka, M. Kawamoto, and K. Takatani, Evaluation of surface tension of molten slag in multi-component systems, ISIJ Int., 47(2007), No. 7, p. 935. doi: 10.2355/isijinternational.47.935
    [21]
    K.C. Mills, L. Yuan, and R.T. Jones, Estimating the physical properties of slags, J. South. Afr. Inst. Min. Metall., 111(2011), No. 10, p. 649.
    [22]
    K.C. Mills, S. Karagadde, P.D. Lee, L. Yuan, and F. Shahbazian, Calculation of physical properties for use in models of continuous casting process-Part 1: Mould slags, ISIJ Int., 56(2016), No. 2, p. 264. doi: 10.2355/isijinternational.ISIJINT-2015-364
    [23]
    H.P. Sun, K. Nakashima, and K. Mori, Influence of slag composition on slag–iron interfacial tension, ISIJ Int., 46(2006), No. 3, p. 407. doi: 10.2355/isijinternational.46.407
    [24]
    K. Ogino, Interfacial tension between molten iron alloys and molten slags, Tetsu-to-Hagane, 61(1975), No. 8, p. 2118. doi: 10.2355/tetsutohagane1955.61.8_2118
    [25]
    S.C. Park, H. Gaye, and H.G. Lee, Interfacial tension between molten iron and CaO–SiO2–MgO–Al2O3–FeO slag system, Ironmaking Steelmaking, 36(2009), No. 1, p. 3. doi: 10.1179/174328108X358622
    [26]
    R. Hagemann, H.P. Heller, S. Lachmann, S. Seetharaman, and P.R. Scheller, Slag entrainment in continuous casting and effect of interfacial tension, Ironmaking Steelmaking, 39(2012), No. 7, p. 508. doi: 10.1179/1743281212Y.0000000018
    [27]
    E.J. Jung and D.J. Min, Effect of Al2O3 and MgO on interfacial tension between calcium silicate-based melts and a solid steel substrate, Steel Res. Int., 83(2012), No. 7, p. 705. doi: 10.1002/srin.201200023
    [28]
    J.B. Kim, J.K. Choi, I.W. Han, and I. Sohn, High-temperature wettability and structure of the TiO2–MnO–SiO2–Al2O3 welding flux system, J. Non-Cryst. Solids, 432(2016), p. 218. doi: 10.1016/j.jnoncrysol.2015.10.009
    [29]
    L.J. Zhou, H. Li, W.L. Wang, D. Xiao, L. Zhang, and J. Yu, Effect of Li2O on the behavior of melting, crystallization, and structure for CaO–Al2O3-based mold fluxes, Metall. Mater. Trans. B, 49(2018), No. 5, p. 2232. doi: 10.1007/s11663-018-1327-3
    [30]
    W.L. Wang, E.Z. Gao, L.J. Zhou, L. Zhang, and H. Li, Effect of Al2O3/SiO2 and CaO/Al2O3 ratios on wettability and structure of CaO–SiO2–Al2O3-based mold flux system, J. Iron. Steel Res. Int., 26(2019), No. 4, p. 355. doi: 10.1007/s42243-018-0207-z
    [31]
    H.Y. Yu, X.L. Pan, Y.P. Tian, and G.F. Tu, Mineral transition and formation mechanism of calcium aluminate compounds in CaO–Al2O3–Na2O system during high-temperature sintering, Int. J. Miner. Metall. Mater., 27(2020), No. 7, p. 924. doi: 10.1007/s12613-019-1951-1
    [32]
    J.Y. Chen, W.L. Wang, L.J. Zhou, and Z.H. Pan, Effect of Al2O3 and MgO on crystallization and structure of CaO–SiO2–B2O3-based fluorine-free mold flux, J. Iron Steel Res. Int., 28(2021), No. 5, p. 552. doi: 10.1007/s42243-020-00439-4
    [33]
    E.Z. Gao, W.L. Wang, and L. Zhang, Effect of alkaline earth metal oxides on the viscosity and structure of the CaO–Al2O3 based mold flux for casting high-al steels, J. Non-Cryst. Solids, 473(2017), p. 79. doi: 10.1016/j.jnoncrysol.2017.07.029
    [34]
    G.H. Zhang, K.C. Chou, and K. Mills, Modelling viscosities of CaO–MgO–Al2O3–SiO2 molten slags, ISIJ Int., 52(2012), No. 3, p. 355. doi: 10.2355/isijinternational.52.355
    [35]
    J.A. Duffy and M.D. Ingram, Optical basicity—IV: Influence of electronegativity on the Lewis basicity and solvent properties of molten oxyanion salts and glasses, J. Inorg. Nucl. Chem., 37(1975), No. 5, p. 1203. doi: 10.1016/0022-1902(75)80469-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(905) PDF Downloads(69) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return