Ju-jin Wang, Li-feng Zhang, Gong Cheng, Qiang Ren, and Ying Ren, Dynamic mass variation and multiphase interaction among steel, slag, lining refractory and nonmetallic inclusions: Laboratory experiments and mathematical prediction, Int. J. Miner. Metall. Mater., 28(2021), No. 8, pp.1298-1308. https://dx.doi.org/10.1007/s12613-021-2304-4
Cite this article as: Ju-jin Wang, Li-feng Zhang, Gong Cheng, Qiang Ren, and Ying Ren, Dynamic mass variation and multiphase interaction among steel, slag, lining refractory and nonmetallic inclusions: Laboratory experiments and mathematical prediction, Int. J. Miner. Metall. Mater., 28(2021), No. 8, pp.1298-1308. https://dx.doi.org/10.1007/s12613-021-2304-4
Research Article

Dynamic mass variation and multiphase interaction among steel, slag, lining refractory and nonmetallic inclusions: Laboratory experiments and mathematical prediction

Author Affilications
Funds: This work was financially supported by the National Natural Science Foundation China (Nos. U1860206, 51725402, and 51874032), the Fundamental Research Funds for the Central Universities (Nos. FRF-TP-19-037A2Z and FRF-BD-20-04A), the S&T Program of Hebei, China (No. 20311006D), the High Steel Center (HSC) at Yanshan University, China, and the High Quality Steel Consortium (HQSC) at University of Science and Technology Beijing, China
  • The mass transfer among the multiphase interactions among the steel, slag, lining refractory, and nonmetallic inclusions during the refining process of a bearing steel was studied using laboratory experiments and numerical kinetic prediction. Experiments on the system with and without the slag phase were carried out to evaluate the influence of the refractory and the slag on the mass transfer. A mathematical model coupled the ion and molecule coexistence theory, coupled-reaction model, and the surface renewal theory was established to predict the dynamic mass transfer and composition transformation of the steel, the slag, and nonmetallic inclusions in the steel. During the refining process, Al2O3 inclusions transformed into MgO inclusions owing to the mass transfer of [Mg] at the steel/refractory interface and (MgO) at the slag/refractory interface. Most of the aluminum involved in the transport entered the slag and a small part of the aluminum transferred to lining refractory, forming the Al2O3 or MgO·Al2O3. The slag had a significant acceleration effect on the mass transfer. The mass transfer rate (or the reaction rate) of the system with the slag was approximately 5 times larger than that of the system without the slag. In the first 20 min of the refining, rates of magnesium mass transfer at the steel/inclusion interface, steel/refractory interface, and steel/slag interface were x, 1.1x, and 2.2x, respectively. The composition transformation of inclusions and the mass transfer of magnesium and aluminum in the steel were predicted with an acceptable accuracy using the established kinetic model.

  • [1]
    R.Y. Yin, Metallurgical Process Engineering, Springer, Berlin, Heidelberg, 2011, p. 26.
    [2]
    L.F. Zhang, Non-Metallic Inclusions in Steels: Fundamentals, Metallurgical Industry Press, 2019, p. 320.
    [3]
    L.F. Zhang, Non-metallic Inclusions in Steels: Industrial Practice, Metallurgical Industry Press, Beijing, 2019, p. 482.
    [4]
    C. Gu, J.H. Lian, Y.P. Bao, Q.G. Xie, and S. Munstermann, Microstructure-based fatigue modelling with residual stresses: Prediction of the fatigue life for various inclusion sizes, Int. J. Fatigue, 129(2019), art. No. 105158. DOI: 10.1016/j.ijfatigue.2019.06.018
    [5]
    Y.P. Chu, Z.Y. Chen, N. Liu, and L.F. Zhang, Formation and control of spinel inclusions in high-speed heavy rail steel, Iron Steel, 55(2020), No. 1, p. 38.
    [6]
    M.M. Song, C.L. Hu, B. Song, H.Y. Zhu, Z.L. Xue, and R.S. Xu, Effect of Ti–Mg treatment on the impact toughness of heat affected zone in 0.15%C–1.31%Mn steel, Steel Res. Int., 89(2018), No. 3, art. No. 1700355. DOI: 10.1002/srin.201700355
    [7]
    J.F. Xu, K.P. Wang, Y. Wang, Z.D. Qu, and X.K. Tu, Effects of ferrosilicon alloy, Si content of steel, and slag basicity on compositions of inclusions during ladle furnace refining of Al-killed steel, J. Iron Steel Res. Int., 27(2020), No. 9, p. 1011. DOI: 10.1007/s42243-020-00384-2
    [8]
    S.J. Li, G.G. Cheng, Z.Q. Miao, L. Chen, and X.Y. Jiang, Effect of slag on oxide inclusions in carburized bearing steel during industrial electroslag remelting, Int. J. Miner. Metall. Mater., 26(2019), No. 3, p. 291. DOI: 10.1007/s12613-019-1737-5
    [9]
    J.H. Shin and J.H. Park, Effect of CaO/Al2O3 ratio of ladle slag on formation behavior of inclusions in Mn and V alloyed steel, ISIJ Int., 58(2018), No. 1, p. 88. DOI: 10.2355/isijinternational.ISIJINT-2017-456
    [10]
    Y. Ren and L.F. Zhang, Thermodynamic model for prediction of slag–steel–inclusion reactions of 304 stainless steels, ISIJ Int., 57(2017), No. 1, p. 68. DOI: 10.2355/isijinternational.ISIJINT-2016-509
    [11]
    Y. Ren, L.F. Zhang, W. Fang, S.J. Shao, J. Yang, and W.D. Mao, Effect of slag composition on inclusions in Si-deoxidized 18Cr–8Ni stainless steels, Metall. Mater. Trans. B, 47(2016), No. 2, p. 1024. DOI: 10.1007/s11663-015-0554-0
    [12]
    A. Harada, G. Miyano, N. Maruoka, H. Shibata, and S.Y. Kitamura, Dissolution behavior of Mg from MgO into molten steel deoxidized by Al, ISIJ Int., 54(2014), No. 10, p. 2230. DOI: 10.2355/isijinternational.54.2230
    [13]
    Y.S. Zou, A. Huang, L.P. Fu, and H.Z. Gu, Effect of lightweight refractories on the cleanness of bearing steels, Ceram. Int., 44(2018), No. 11, p. 12965. DOI: 10.1016/j.ceramint.2018.04.112
    [14]
    C.Y. Liu, F.X. Huang, J.L. Suo, and X.H. Wang, Effect of magnesia-carbon refractory on the kinetics of MgO·Al2O3 spinel inclusion generation in extra-low oxygen steels, Metall. Mater. Trans. B, 47(2016), No. 2, p. 989. DOI: 10.1007/s11663-015-0540-6
    [15]
    C.Y. Liu, F.X. Huang, and X.H. Wang, The effect of refining slag and refractory on inclusion transformation in extra low oxygen steels, Metall. Mater. Trans. B, 47(2016), No. 2, p. 999. DOI: 10.1007/s11663-016-0592-2
    [16]
    M.C. Mantovani, L.R. Moraes, R. Leandro da Silva, E.F. Cabral, E.A. Possente, C.A. Barbosa, and B.P. Ramos, Interaction between molten steel and different kinds of MgO based tundish linings, Ironmaking Steelmaking, 40(2013), No. 5, p. 319. DOI: 10.1179/1743281212Y.0000000035
    [17]
    X.Y. Gao, L. Zhang, X.H. Qu, X.W. Chen, and Y.F. Luan, Effect of interaction of refractories with Ni-based superalloy on inclusions during vacuum induction melting, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1551. DOI: 10.1007/s12613-020-2098-9
    [18]
    Y.S. Zou, A. Huang, L.P. Fu, P.F. Lian, Y.J. Wang, and H.Z. Gu, Chemical interactions between a calcium aluminate glaze and molten stainless steel containing alumina inclusions, Ceram. Int., 44(2018), No. 1, p. 1099. DOI: 10.1016/j.ceramint.2017.10.057
    [19]
    M. Song, M. Nzotta, and S.C. Du, Study of the formation of non-metallic inclusions by ladle glaze and the effect of slag on inclusion composition using tracer experiments, Steel Res. Int., 80(2009), No. 10, p. 753.
    [20]
    Y.S. Lee, S.M. Jung, and D.J. Min, Interfacial reaction between Al2O3–SiO2–C refractory and Al/Ti-killed steels, ISIJ Int., 54(2014), No. 4, p. 827. DOI: 10.2355/isijinternational.54.827
    [21]
    Y. Li, C.Y. Chen, G.Q. Qin, Z.H. Jiang, M. Sun, and K. Chen, Influence of crucible material on inclusions in 95Cr saw-wire steel deoxidized by Si–Mn, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1083. DOI: 10.1007/s12613-019-1957-8
    [22]
    J.H. Shin, Y. Chung, and J.H. Park, Refractory–slag–metal–inclusion multiphase reactions modeling using computational thermodynamics: Kinetic model for prediction of inclusion evolution in molten steel, Metall. Mater. Trans. B, 48(2017), No. 1, p. 46. DOI: 10.1007/s11663-016-0734-6
    [23]
    W.L. Wang, L.W. Xue, T.S. Zhang, L.J. Zhou, H.P. Liu, H.G. Xiao, and Q.B. Sun, The influence of MgO/ZrO2/Al2O3 refractories on the refining process of Ti-containing steel based on kinetic study, Ceram. Int., 46(2020), No. 11, p. 17561. DOI: 10.1016/j.ceramint.2020.04.055
    [24]
    Y. Zhang, Y. Ren, and L.F. Zhang, Modeling transient evolution of inclusion in Si–Mn-killed steels during the ladle mixing process, Metall. Res. Technol., 114(2017), No. 3, art. No. 308. DOI: 10.1051/metal/2017035
    [25]
    Y. Zhang, Y. Ren, and L.F. Zhang, Kinetic study on compositional variations of inclusions, steel and slag during refining process, Metall. Res. Technol., 115(2018), No. 4, art. No. 415. DOI: 10.1051/metal/2018059
    [26]
    L.G. Zhu, Y.N. Jia, Z.X. Liu, C.J. Zhang, X.J. Wang, and P.C. Xiao, Mass-transfer model for steel, slag, and inclusions during ladle-furnace refining, High Temp. Mater. Processes, 37(2018), No. 7, p. 665. DOI: 10.1515/htmp-2017-0011
    [27]
    A. Harada, N. Maruoka, H. Shibata, and S.Y. Kitamura, A kinetic model to predict the compositions of metal, slag and inclusions during ladle refining: Part 1. basic concept and application, ISIJ Int., 53(2013), No. 12, p. 2110. DOI: 10.2355/isijinternational.53.2110
    [28]
    S. Ohguchi, D.G.C. Robertson, B. Deo, P. Grieveson, and J.H.E. Jeffes, Simultaneous dephosphorization and desulphurization of molten pig iron, Ironmaking Steelmaking, 11(1984), No. 4, p. 202.
    [29]
    M. Hino and K. Ito, Thermodynamic Data for Steelmaking, Tohoku University Press, Tohoku, 2010, p. 259.
    [30]
    C. Wagner, Thermodynamics of Alloys, Addision-Wesley Pub. Co, Cambridge, 1962, p. 51.
    [31]
    C.H.P. Lupis and J.F. Elliott, Generalized interaction coefficients: Part I: Definitions, Acta Metall., 14(1966), No. 4, p. 529. DOI: 10.1016/0001-6160(66)90320-8
    [32]
    G.K. Sigworth and J.F. Elliott, The thermodynamics of liquid dilute iron alloys, Met. Sci., 8(1974), No. 1, p. 298. DOI: 10.1179/msc.1974.8.1.298
    [33]
    H. Suito and R. Inoue, Thermodynamics on control of inclusions composition in ultraclean steels, ISIJ Int., 36(1996), No. 5, p. 528. DOI: 10.2355/isijinternational.36.528
    [34]
    J.J. Wang, L.F. Zhang, T.J. Wen, Y. Ren, and W. Yang, Kinetic prediction for the composition of inclusions in the molten steel during the electroslag remelting, Metall. Mater. Trans. B, 52(2021), No. 3, p. 1521. DOI: 10.1007/s11663-021-02120-x
    [35]
    J. Zhang, Calculating model of mass action concentrations for the slag system MnO–SiO2, J. Univ. Sci. Technol. Beijing, 8(1986), No. 4, p. 1.
    [36]
    X.M. Yang, C.B. Shi, M. Zhang, G.M. Chai, and F. Wang, A thermodynamic model of sulfur distribution ratio between CaO–SiO2–MgO–FeO–MnO–Al2O3 slags and molten steel during LF refining process based on the ion and molecule coexistence theory, Metall. Mater. Trans. B, 42(2011), No. 6, p. 1150. DOI: 10.1007/s11663-011-9547-9
    [37]
    S.C. Duan, C. Li, X.L. Guo, H.J. Guo, J. Guo, and W.S. Yang, A thermodynamic model for calculating manganese distribution ratio between CaO–SiO2–MgO–FeO–MnO–Al2O3–TiO2–CaF2 ironmaking slags and carbon saturated hot metal based on the IMCT, Ironmaking Steelmaking, 45(2018), No. 7, p. 655. DOI: 10.1080/03019233.2017.1318547
    [38]
    A. Harada, N. Maruoka, H. Shibata, and S.Y. Kitamura, A kinetic model to predict the compositions of metal, slag and inclusions during ladle refining: Part2. condition to control inclusion composition, ISIJ Int., 53(2013), No. 12, p. 2118. DOI: 10.2355/isijinternational.53.2118
    [39]
    L.P. Fu, H.Z. Gu, A. Huang, Y.S. Zou, and H.W. Ni, Enhanced corrosion resistance through the introduction of fine pores: Role of nano-sized intracrystalline pores, Corros. Sci., 161(2019), art. No. 108182. DOI: 10.1016/j.corsci.2019.108182
    [40]
    L. Fu, Y.S. Zou, A. Huang, H.Z. Gu, and H.W. Ni, Corrosion mechanism of lightweight microporous alumina-based refractory by molten steel, J. Am. Ceram. Soc., 102(2019), No. 6, p. 3705. DOI: 10.1111/jace.16205
    [41]
    P.V. Danckwerts, Kinetics of the absorption of carbon dioxide in water, [in] Insights into Chemical Engineering, Elsevier, Amsterdam, 1981, p. 5.
    [42]
    J.H. Wei and A. Mitchell, Changes in composition during A. C.ESR—I. Theoretical development, Acta Metall. Sin., 20(1984), No. 5, p. 387.
    [43]
    D. Hou, Z.H. Jiang, Y.W. Dong, W. Gong, Y.L. Cao, and H.B. Cao, Effect of slag composition on the oxidation kinetics of alloying elements during electroslag remelting of stainless steel: Part-1 mass-transfer model, ISIJ Int., 57(2017), No. 8, p. 1400. DOI: 10.2355/isijinternational.ISIJINT-2017-147
    [44]
    D. Hou, Z.H. Jiang, Y.W. Dong, Y. Li, W. Gong, and F.B. Liu, Mass transfer model of desulfurization in the electroslag remelting process, Metall. Mater. Trans. B, 48(2017), No. 3, p. 1885. DOI: 10.1007/s11663-017-0921-0
    [45]
    W.T. Lou and M.Y. Zhu, Numerical simulation of desulfurization behavior in gas-stirred systems based on computation fluid dynamics–simultaneous reaction model (CFD–SRM) coupled model, Metall. Mater. Trans. B, 45(2014), No. 5, p. 1706. DOI: 10.1007/s11663-014-0105-0
    [46]
    J.C. Lamont and D.S. Scott, An eddy cell model of mass transfer into the surface of a turbulent liquid, AIChE J., 16(1970), No. 4, p. 513. DOI: 10.1002/aic.690160403
  • Related Articles

    [1]Zhe-nan Jin, Jian-fang Lü, Hong-ying Yang, Zhi-yuan Ma. Corrosion mechanism of magnesia-chromite refractories by ZnO-containing fayalite slags: Effect of funnel glass addition [J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(12): 1604-1616. DOI: 10.1007/s12613-019-1912-8
    [2]V. H. Vargas, I. Mejía, V. H. Baltazar-Hernández, C. Maldonado. Effect of retained austenite and nonmetallic inclusions on the thermal/electrical properties and resistance spot welding nuggets of Si-containing TRIP steels [J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(1): 52-63. DOI: 10.1007/s12613-019-1709-9
    [3]Ye-lian Zhou, Zhi-yin Deng, Miao-yong Zhu. Study on the separation process of non-metallic inclusions at the steel-slag interface using water modeling [J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(6): 627-637. DOI: 10.1007/s12613-017-1445-y
    [4]Hai-bin Zuo, Wei-wei Geng, Jian-liang Zhang, Guang-wei Wang. Comparison of kinetic models for isothermal CO2 gasification of coal char-biomass char blended char [J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(4): 363-370. DOI: 10.1007/s12613-015-1081-3
    [5]Yan-hui Sun, Ya-nan Zeng, Rui Xu, Kai-ke Cai. Formation mechanism and control of MgO·Al2O3 inclusions in non-oriented silicon steel [J]. International Journal of Minerals, Metallurgy and Materials, 2014, 21(11): 1068-1076. DOI: 10.1007/s12613-014-1011-9
    [6]Shu-hao Chen, Min Jiang, Xiao-fei He, Xin-hua Wang. Top slag refining for inclusion composition transform control in tire cord steel [J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(6): 490-498. DOI: 10.1007/s12613-012-0585-3
    [7]De-yong Wang, Jun Liu, Mao-fa Jiang, Fumitaka Tsukihashi, Hiroyuki Matsuura. Dissolution of Al2TiO5 inclusions in CaO-SiO2-Al2O3 slags at 1823 K [J]. International Journal of Minerals, Metallurgy and Materials, 2011, 18(6): 646-651. DOI: 10.1007/s12613-011-0490-1
    [8]Fuxiang Huang, Jiongming Zhang, Xinhua Wang, Yuan Fang, Yan Yu. Nonmetallic inclusions in SUS304 strip produced by twin-roll strip casting [J]. International Journal of Minerals, Metallurgy and Materials, 2008, 15(2): 110-113. DOI: 10.1016/S1005-8850(08)60022-5
    [9]Fangming Yuan, Xinhua Wang, Xuefu Yang. Influence of calcium content on solid ratio of inclusions in Ca-treated liquid steel [J]. International Journal of Minerals, Metallurgy and Materials, 2006, 13(6): 486-489. DOI: 10.1016/S1005-8850(06)60099-6
    [10]Hong Li, Linxin Ning, Juan Wen, Jiongming Zhang, Yasushi Sasaki, Mitsutaka Hino. Simulation research on monomer agglomeration of nonmetallic inclusions in steel with a diffusion limited aggregation model [J]. International Journal of Minerals, Metallurgy and Materials, 2006, 13(2): 117-120. DOI: 10.1016/S1005-8850(06)60026-1
  • Cited by

    Periodical cited type(34)

    1. Chunjie She, Guojun Chen, Xingwei Pei, et al. In Situ Observation of the Desulfurization of the Molten Steel by CaO–Al2O3 Desulfurizers. Metallurgical and Materials Transactions B, 2025. DOI:10.1007/s11663-025-03500-3
    2. N. Preisser, Y. Wang, J. Cejka, et al. Application of high-temperature confocal scanning laser microscopy to investigate non-metallic inclusions in steel: a review. Journal of Iron and Steel Research International, 2025, 32(2): 334. DOI:10.1007/s42243-024-01413-0
    3. Weijian Wang, Yuan Gao, Ying Ren, et al. Observation of Initial Interfacial Reaction between High Aluminum Molten Steel and CaO–Al2O3 Inclusion at 1873 K Using Laser Confocal Scanning Microscopy and Micro‐Computerized Tomography. steel research international, 2025, 96(1) DOI:10.1002/srin.202300803
    4. Yujie Cheng, Wei Chen, Jujin Wang, et al. Reaction Mechanism between MgO and MgOC Lining Refractories and a High‐Carbon Al‐Killed Steel. steel research international, 2025, 96(1) DOI:10.1002/srin.202400364
    5. Yi Wang, Jian-xun Fu, Deepoo Kumar, et al. State-of-art of in situ observations of inclusion agglomeration at steel/Ar and steel/slag interfaces: a review of recent development on experimental and theoretical studies. Journal of Iron and Steel Research International, 2025, 32(2): 315. DOI:10.1007/s42243-024-01410-3
    6. Bin Guo, Jujin Wang, Lifeng Zhang. Dissolution Kinetics of Al2O3, CaAl4O7, and MgAl2O4 Inclusions Into CaO–Al2O3–SiO2 Slags with Varying MgO Content. Metallurgical and Materials Transactions B, 2025, 56(1): 1029. DOI:10.1007/s11663-024-03412-8
    7. Yujie Cheng, Jujin Wang, Lifeng Zhang. Reaction mechanism between MgO and MgO–C lining refractories and an ultra-low-carbon Al-killed steel. Metallurgical Research & Technology, 2025, 122(1): 103. DOI:10.1051/metal/2024093
    8. Yujie Cheng, Shengchao Duan, Lifeng Zhang. Comparison Study of the Effect of MgO, MgO‐CaO, MgO‐Al2O3‐C, and MgO‐C Refractories on Cleanliness of a SiMn‐Killed Steel. steel research international, 2025. DOI:10.1002/srin.202400788
    9. Guojun Chen, Ying Ren, Minghui Wu, et al. <i>In-Situ</i> Observation of the Modification Behavior of Alumina Inclusions in a Calcium-treated Steel. ISIJ International, 2024, 64(8): 1263. DOI:10.2355/isijinternational.ISIJINT-2024-049
    10. Jujin Wang, Hong Liu, Lifeng Zhang. Modeling Study on the Evolution of Slag-Entrained Inclusions Containing La2O3 in a Calcium-Treated Aluminum-Killed Steel. Metallurgical and Materials Transactions B, 2024, 55(4): 2673. DOI:10.1007/s11663-024-03131-0
    11. Pengfei Wu, Xinyue Liu, Xiaoming Liu, et al. Effect of Industrial Byproduct Gypsum on the Mechanical Properties and Stabilization of Hazardous Elements of Cementitious Materials: A Review. Materials, 2024, 17(17): 4183. DOI:10.3390/ma17174183
    12. Fu-bin Gao, Fu-ming Wang, Xiang Zhang, et al. Effect of Al content in molten steel on interaction between MgO–C refractory and SPHC steel. Journal of Iron and Steel Research International, 2024, 31(4): 838. DOI:10.1007/s42243-023-01107-z
    13. Qiang Wang, Chong Tan, Chang Liu, et al. Elaboration of A Coupled Numerical Model for Predicting Magnesia Refractory Damage Behavior in High-Temperature Reactor. Metallurgical and Materials Transactions B, 2024, 55(1): 168. DOI:10.1007/s11663-023-02947-6
    14. Chunjie She, Kaiyu Peng, Yu Sun, et al. Kinetic Model of Desulfurization During RH Refining Process. Metallurgical and Materials Transactions B, 2024, 55(1): 92. DOI:10.1007/s11663-023-02942-x
    15. Jingcheng Wang, Zhentong Liu, Wei Chen, et al. Numerical simulation on the multiphase flow and reoxidation of the molten steel in a two-strand tundish during ladle change. International Journal of Minerals, Metallurgy and Materials, 2024, 31(7): 1540. DOI:10.1007/s12613-024-2909-5
    16. Jujin Wang, Zi Ye, Lifeng Zhang. Fluid flow, slag entrainment, and composition evolution of slag inclusions during vacuum degassing refining. Metallurgical Research & Technology, 2024, 121(6): 605. DOI:10.1051/metal/2024075
    17. Chao Gu, Ziyu Lyu, Qin Hu, et al. Investigation of the structural, electronic and mechanical properties of Ca-SiO2 compound particles in steel based on density functional theory. International Journal of Minerals, Metallurgy and Materials, 2023, 30(4): 744. DOI:10.1007/s12613-022-2588-z
    18. Ying Ren, Weijian Wang, Wen Yang, et al. Modification of Non-metallic Inclusions in Steel by Calcium Treatment: A Review. ISIJ International, 2023, 63(12): 1927. DOI:10.2355/isijinternational.ISIJINT-2023-143
    19. Shuai Hao, Guoping Luo, Yuanyuan Lu, et al. Thermodynamic Analysis of Mineral Phase Composition of Steel Slag System. Minerals, 2023, 13(5): 643. DOI:10.3390/min13050643
    20. Yunsong Liu, Enhui Wang, Linchao Xu, et al. Synthesis of CA6/AlON composite with enhanced slag resistance. International Journal of Minerals, Metallurgy and Materials, 2023, 30(4): 756. DOI:10.1007/s12613-022-2435-2
    21. Lan Gou, Hong Liu, Ying Ren, et al. Concept of Inclusion Capacity of Slag and Its Application on the Dissolution of Al2O3, ZrO2 and SiO2 Inclusions in CaO–Al2O3–SiO2 Slag. Metallurgical and Materials Transactions B, 2023, 54(3): 1314. DOI:10.1007/s11663-023-02763-y
    22. Minghui Wu, Changyu Ren, Ying Ren, et al. In Situ Observation of the Agglomeration of MgO–Al2O3 Inclusions on the Surface of a Molten GCr15-Bearing Steel. Metallurgical and Materials Transactions B, 2023, 54(3): 1159. DOI:10.1007/s11663-023-02751-2
    23. Changyu Ren, Caide Huang, Lifeng Zhang, et al. In situ observation of the dissolution kinetics of Al2O3 particles in CaO-Al2O3-SiO2 slags using laser confocal scanning microscopy. International Journal of Minerals, Metallurgy and Materials, 2023, 30(2): 345. DOI:10.1007/s12613-021-2347-6
    24. Hongliang Zhao, Jingqi Wang, Fengqin Liu, et al. Flow zone distribution and mixing time in a Peirce—Smith copper converter. International Journal of Minerals, Metallurgy and Materials, 2022, 29(1): 70. DOI:10.1007/s12613-020-2196-8
    25. Lingxiao Cui, Limei Cheng, Ying Ren, et al. Effect of Cerium on the Interaction between a Si–Mn‐Killed Steel and a MgO‐Based Refractory. steel research international, 2022, 93(10) DOI:10.1002/srin.202200104
    26. Yubao Liu, Jujin Wang, Lifeng Zhang, et al. Laboratory investigation on quantitative effect of ladle filler sands on the cleanliness of a bearing steel. Metallurgical Research & Technology, 2022, 119(2): 204. DOI:10.1051/metal/2022018
    27. Yubao Liu, Lifeng Zhang, Gong Cheng, et al. Effect of lining refractory and high-basicity slag on non-metallic inclusions in a high carbon Al-killed steel. Metallurgical Research & Technology, 2022, 119(4): 414. DOI:10.1051/metal/2022058
    28. Jie Liu, Bin Li, Yuanping Jia, et al. Slag resistance mechanism of CaO·6Al2O3 refractory and its effect on inclusions of aluminum deoxidized steel. International Journal of Applied Ceramic Technology, 2022, 19(6): 3323. DOI:10.1111/ijac.14156
    29. An-jun Xu, Yan-ping Bao. Editorial for special issue on metallurgical process engineering and intelligent manufacturing. International Journal of Minerals, Metallurgy and Materials, 2021, 28(8): 1249. DOI:10.1007/s12613-021-2333-z
    30. Jujin Wang, Lifeng Zhang. TMS 2024 153rd Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series, DOI:10.1007/978-3-031-50349-8_93
    31. Lifeng Zhang, Ying Ren. Handbook of Non-Metallic Inclusions in Steels. DOI:10.1007/978-981-97-9638-0_15
    32. Jujin Wang, Yuexin Zhang, Binyu Lyu, et al. Materials Processing Fundamentals 2023. The Minerals, Metals & Materials Series, DOI:10.1007/978-3-031-22657-1_11
    33. Lifeng Zhang, Ying Ren. Handbook of Non-Metallic Inclusions in Steels. DOI:10.1007/978-981-97-9638-0_14
    34. Lifeng Zhang, Sridhar Seetharaman, Guocheng Wang. Treatise on Process Metallurgy. DOI:10.1016/B978-0-323-85480-1.00038-5

    Other cited types(0)

Catalog

    Share Article

    Article Metrics

    Article views (1162) PDF downloads (101) Cited by(34)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return