Fang Yuan, Zheng Zhao, Yanling Zhang,  and Tuo Wu, Effect of Al2O3 content on the viscosity and structure of CaO–SiO2–Cr2O3–Al2O3 slags, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1522-1531. https://doi.org/10.1007/s12613-021-2306-2
Cite this article as:
Fang Yuan, Zheng Zhao, Yanling Zhang,  and Tuo Wu, Effect of Al2O3 content on the viscosity and structure of CaO–SiO2–Cr2O3–Al2O3 slags, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1522-1531. https://doi.org/10.1007/s12613-021-2306-2
Research Article

Effect of Al2O3 content on the viscosity and structure of CaO–SiO2–Cr2O3–Al2O3 slags

+ Author Affiliations
  • Corresponding author:

    Yanling Zhang    E-mail: zhangyanling@metall.ustb.edu.cn

  • Received: 4 January 2021Revised: 12 May 2021Accepted: 17 May 2021Available online: 18 May 2021
  • The effect of Al2O3 content on the viscosity and structure of CaO–SiO2–Cr2O3–Al2O3 slags was investigated to facilitate recycling of Cr in steelmaking slags. The slags exhibit good Newtonian behavior at high temperature. The viscosity of acidic slag first increases from 0.825 to 1.141 Pa·s as the Al2O3 content increases from 0 to 10wt% and then decreases to 1.071 Pa·s as the Al2O3 content increases further to 15wt%. The viscosity of basic slag first increases from 0.084 to 0.158 Pa·s as the Al2O3 content increases from 0 to 15wt% and then decreases to 0.135 Pa·s as the Al2O3 content increases further to 20wt%. Furthermore, Cr2O3-containing slag requires less Al2O3 to reach the maximum viscosity than Cr2O3-free slag; the Al2O3 contents at which the behavior changes are 10wt% and 15wt% for acidic and basic slags, respectively. The activation energy of the slags is consistent with the viscosity results. Raman spectra demonstrate that [AlO4] tetrahedra appear initially and were replaced by [AlO6] octahedra with further addition of Al2O3. The dissolved organic phosphorus content of the slag first increases and then decreases with increasing Al2O3 content, which is consistent with the viscosity and Raman results.
  • loading
  • [1]
    K.I. Miyamoto, K. Kato, and T. Yuki, Effect of slag properties on reduction rate of chromium oxide in Cr2O3 containing slag by carbon in steel, Tetsu-to-Hagane, 88(2002), No. 12, p. 838. doi: 10.2355/tetsutohagane1955.88.12_838
    [2]
    X.T. Zeng, C.H. Yuan, H. Xu, J.X. Han and Y. Tian, Development status quo of the world chromite resources and investment suggestion, China Min., 24(2015), No. 8, p. 16.
    [3]
    M. Kekkonen, H. Oghbasilasie, and S. Louhenkilpi, Viscosity Models for Molten Slags, Aalto University publication series, Helsinki, 2012.
    [4]
    L.J. Wang and S. Seetharaman, Experimental studies on the oxidation states of chromium oxides in slag systems, Metall. Mater. Trans. B, 41(2010), No. 5, p. 946. doi: 10.1007/s11663-010-9383-3
    [5]
    V.D. Eisenhüttenleute, Slag Atlas, 2nd ed., Verlag Stahleisen GmbH, Düsseldorf, 1995.
    [6]
    E. Minami, M. Amatatsu, and N. Sano, Viscosity measurement of slag containing chromium oxide, Tetsu-to-Hagane, 73(1987), p. S871.
    [7]
    G.B. Qiu, L. Chen, J.Y. Zhu, X.W. Lv, and C.G. Bai, Effect of Cr2O3 addition on viscosity and structure of Ti-bearing blast furnace slag, ISIJ Int., 55(2015), No. 7, p. 1367. doi: 10.2355/isijinternational.55.1367
    [8]
    C. Xu, W.L. Wang, L.J. Zhou, S.L. Xie, and C. Zhang, The effects of Cr2O3 on the melting, viscosity, heat transfer, and crystallization behaviors of mold flux used for the casting of Cr-bearing alloy steels, Metall. Mater. Trans. B, 46(2015), No. 2, p. 882. doi: 10.1007/s11663-014-0258-x
    [9]
    W.J. Huang, Y.H. Zhao, S. Yu, L.X. Zhang, Z.C. Ye, N. Wang, and M. Chen, Viscosity property and structure analysis of FeO–SiO2–V2O3–TiO2–Cr2O3 slags, ISIJ Int., 56(2016), No. 4, p. 594. doi: 10.2355/isijinternational.ISIJINT-2015-457
    [10]
    R.Z. Xu, J.L. Zhang, Z.Y. Wang, and K.X. Jiao, Influence of Cr2O3 and B2O3 on viscosity and structure of high alumina slag, Steel Res. Int., 88(2017), No. 4, art. No. 1600241. doi: 10.1002/srin.201600241
    [11]
    Q.H. Li, J.T. Gao, Y.L. Zhang, Z.Q. An, and Z.C. Guo, Viscosity measurement and structure analysis of Cr2O3-bearing CaO–SiO2–MgO–Al2O3 slags, Metall. Mater. Trans. B, 48(2017), No. 1, p. 346. doi: 10.1007/s11663-016-0858-8
    [12]
    L. Forsbacka, and L. Holappa, Viscosity of SiO2–CaO–CrOx slags in contact with metallic chromium and application of the Iida model, [in] VII International Conference on Molten Slags, Fluxes and Salts, Johannesburg, 2004, p. 129.
    [13]
    L. Forsbacka, L. Holappa, A. Kondratiev, and E. Jak, Experimental study and modelling of viscosity of chromium containing slags, Steel Res. Int., 78(2007), No. 9, p. 676. doi: 10.1002/srin.200706269
    [14]
    L. Forsbacka and L. Holappa, Viscosity of CaO–CrOx–SiO2 slags in a relatively high oxygen partial pressure atmosphere, Scand. J. Metall., 33(2004), No. 5, p. 676. doi: 10.1111/j.1600-0692.2004.00698.x
    [15]
    K.C. Mills, L. Yuan, Z. Li, G.H. Zhang, and K.C. Chou, A review of the factors affecting the thermophysical properties of silicate slags, High Temp. Mater. Processes, 31(2012), No. 4-5, p. 301. doi: 10.1515/htmp-2012-0097
    [16]
    F. Yuan, Z. Zhao, Y.L. Zhang, J.T. Gao, and T. Wu, Viscosity measurements of CrO-bearing CaO–SiO2–5%Al2O3–CrO slag equilibrating with metallic Cr, ISIJ Int., 60(2020), No. 3, p. 613. doi: 10.2355/isijinternational.ISIJINT-2019-377
    [17]
    T. Wu, Y.L. Zhang, F. Yuan, and Z.Q. An, Effects of the Cr2O3 content on the viscosity of CaO–SiO2–10Pct Al2O3–Cr2O3 quaternary slag, Metall. Mater. Trans. B, 49(2018), No. 4, p. 1719. doi: 10.1007/s11663-018-1258-z
    [18]
    J.H. Park, H. Kim, and D.J. Min, Novel approach to link between viscosity and structure of silicate melts via Darken’s excess stability function: Focus on the amphoteric behavior of alumina, Metall. Mater. Trans. B, 39(2008), No. 1, p. 150. doi: 10.1007/s11663-007-9122-6
    [19]
    J.H. Park, D.J. Min, and H.S. Song, Amphoteric behavior of alumina in viscous flow and structure of CaO–SiO2 (–MgO) –Al2O3 slags, Metall. Mater. Trans. B, 35(2004), No. 2, p. 269. doi: 10.1007/s11663-004-0028-2
    [20]
    F. Shahbazian, S.C. Du, and S. Seetharaman, The effect of addition of Al2O3 on the viscosity of CaO–“FeO”–SiO2–CaF2 slags, ISIJ Int., 42(2002), No. 2, p. 155. doi: 10.2355/isijinternational.42.155
    [21]
    H.S. Park, S.S. Park, and I. Sohn, The viscous behavior of FeOt–Al2O3–SiO2 copper smelting slags, Metall. Mater. Trans. B, 42(2011), No. 4, p. 692. doi: 10.1007/s11663-011-9512-7
    [22]
    B.O. Mysen, D. Virgo, and C.M. Scarfe, Relations between the anionic structure and viscosity of silicate melts—A Raman spectroscopic study, Am. Mineral., 65(1980), No. 7-8, p. 690.
    [23]
    P. McMillan, A Raman spectroscopic study of glasses in the system CaO–MgO–SiO2, Am. Mineral., 69(1984), No. 7-8, p. 645.
    [24]
    D.R. Neuville, L. Cormier, and D. Massiot, Al coordination and speciation in calcium aluminosilicate glasses: Effects of composition determined by 27Al MQ-MAS NMR and Raman spectroscopy, Chem. Geol., 229(2006), No. 1-3, p. 173. doi: 10.1016/j.chemgeo.2006.01.019
    [25]
    I. Sohn and D.J. Min, A review of the relationship between viscosity and the structure of calcium-silicate-based slags in ironmaking, Steel Res. Int., 83(2012), No. 7, p. 611. doi: 10.1002/srin.201200040
    [26]
    C.Y. Xu, C. Wang, R.Z. Xu, J.L. Zhang, and K.X. Jiao, Effect of Al2O3 on the viscosity of CaO–SiO2–Al2O3–MgO–Cr2O3 slags, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 797. doi: 10.1007/s12613-020-2187-9
    [27]
    K.Z. Gu, W.L. Wang, J. Wei, H. Matsuura, F. Tsukihashi, I. Sohn, and D.J. Min, Heat-transfer phenomena across mold flux by using the inferred emitter technique, Metall. Mater. Trans. B, 43(2012), No. 6, p. 1393. doi: 10.1007/s11663-012-9718-3
    [28]
    L. Forsbacka, L. Holappa, T. Iida, Y. Kita, and Y. Toda, Experimental study of viscosities of selected CaO–MgO–Al2O3–SiO2 slags and application of the Iida model, Scand. J. Metall., 32(2003), No. 5, p. 273. doi: 10.1034/j.1600-0692.2003.00652.x
    [29]
    J.R. Kim, Y.S. Lee, D.J. Min, S.M. Jung, and S.H. Yi, Influence of MgO and Al2O3 contents on viscosity of blast furnace type slags containing FeO, ISIJ Int., 44(2004), No. 8, p. 1291. doi: 10.2355/isijinternational.44.1291
    [30]
    Y.B. Cheng, C. Xu, S.Y. Pan, Y.F. Xia, R.C. Liu, and S.X. Wang, An investigation of the structural effects of Fe3+ in the alkali-silicate glasses, J. Non-Cryst. Solids, 80(1986), No. 1-3, p. 201. doi: 10.1016/0022-3093(86)90396-0
    [31]
    L. Forsbacka, Experiences in Slag Viscosity Measurement by Rotation Cylinder Method, Helsinki University of Technology, Helsinki, 2015.
    [32]
    M. Chen, S. Raghunath, and B.J. Zhao, Viscosity of SiO2–“FeO”–Al2O3 system in equilibrium with metallic Fe, Metall. Mater. Trans. B, 44(2013), No. 4, p. 820. doi: 10.1007/s11663-013-9831-y
    [33]
    J.H. Park, Composition–structure–property relationships of CaO–MO–SiO2 (M = Mg2+, Mn2+) systems derived from micro-Raman spectroscopy, J. Non Cryst. Solids, 358(2012), No. 23, p. 3096. doi: 10.1016/j.jnoncrysol.2012.08.014
    [34]
    Z. Kalicka, E. Kawecka-Cebula, and K. Pytel, Application of the Iida model for estimation of slag viscosity for Al2O3–Cr2O3–CaO–CaF2 systems, Arch. Metall. Mater., 54(2009), No. 1, p. 179.
    [35]
    J.F. Lü, Z.N. Jin, H.Y. Yang, L.L. Tong, G.B. Chen, and F.X. Xiao, Effect of the CaO/SiO2 mass ratio and FeO content on the viscosity of CaO–SiO2–“FeO”–12wt%ZnO–3wt%Al2O3 slags, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 756. doi: 10.1007/s12613-017-1459-5
    [36]
    C.B. Shi, D.L. Zheng, S.H. Shin, J. Li, and J.W. Cho, Effect of TiO2 on the viscosity and structure of low-fluoride slag used for electroslag remelting of Ti-containing steels, Int. J. Miner. Metall. Mater., 24(2017), No. 1, p. 18. doi: 10.1007/s12613-017-1374-9
    [37]
    J.S. Machin, T.B. Yee, and D.L. Hanna, Viscosity studies of system CaO–MgO–Al2O3–SiO2: III, 35, 45, and 50% SiO2, J. Am. Ceram. Soc., 35(1952), No. 12, p. 322. doi: 10.1111/j.1151-2916.1952.tb13057.x
    [38]
    S. Arrhenius, The viscosity of aqueous mixture, Z. Phys. Chem., 1(1887), p. 285.
    [39]
    K.C. Mills, The influence of structure on the physico-chemical properties of slags, ISIJ Int., 33(1993), No. 1, p. 148. doi: 10.2355/isijinternational.33.148
    [40]
    G.C. Jiang and J.L. You, High temperature Raman spectroscopy used in the study of microstructure of silicate melts, J. Chin. Ceram. Soc., 31(2003), No. 10, p. 998.
    [41]
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A, 32(1976), No. 5, p. 751. doi: 10.1107/S0567739476001551
    [42]
    T.S. Kim and J.H. Park, Structure–viscosity relationship of low-silica calcium aluminosilicate melts, ISIJ Int., 54(2014), No. 9, p. 2031. doi: 10.2355/isijinternational.54.2031
    [43]
    L.J. Wang, Y.X. Wang, Q. Wang, and K. Chou, Raman structure investigations of CaO–MgO–Al2O3–SiO2–CrOx and its correlation with sulfide capacity, Metall. Mater. Trans. B, 47(2016), No. 1, p. 10. doi: 10.1007/s11663-015-0469-9
    [44]
    T.J. Dines and S. Inglis, Raman spectroscopic study of supported chromium(VI) oxide catalysts, Phys. Chem. Chem. Phys., 5(2003), No. 6, p. 1320. doi: 10.1039/b211857b
    [45]
    J.J. Yang, H.F. Cheng, W.N. Martens, and R.L. Frost, Transition of synthetic chromium oxide gel to crystalline chromium oxide: A hot-stage Raman spectroscopic study, J. Raman Spectrosc., 42(2011), No. 5, p. 1069. doi: 10.1002/jrs.2794
    [46]
    J.D. Frantza and B.O. Mysen, Raman spectra and structure of BaO–SiO2–SrO–SiO2 and CaO–SiO2 melts to 1600°C, Chem. Geol., 121(1995), No. 1-4, p. 155. doi: 10.1016/0009-2541(94)00127-T
    [47]
    B.O. Mysen and J.D. Frantz, Structure of silicate melts at high temperature: In-situ measurements in the system BaO–SiO2 to 1669°C, Am. Mineral., 78(1993), No. 7-8, p. 699.
    [48]
    Y.Q. Wu, G.C. Jiang, J.L. You, H.Y. Hou, and H. Chen, Raman scattering coefficients of symmetrical stretching modes of microstructural units in sodium silicate melts, Acta Phys. Sin., 54(2005), No. 2, art. No. 961. doi: 10.7498/aps.54.961
    [49]
    B.O. Mysen and J.D. Frantz, Silicate melts at magmatic temperatures: In-situ structure determination to 1651°C and effect of temperature and bulk composition on the mixing behavior of structural units, Contrib. Mineral. Petrol., 117(1994), No. 1, p. 1. doi: 10.1007/BF00307725
    [50]
    J.F. Stebbins, Effects of temperature and composition on silicate glass structure and dynamics: SI-29 NMR results, J. Non-Cryst. Solids, 106(1988), No. 1-3, p. 359. doi: 10.1016/0022-3093(88)90289-X
    [51]
    J.L. You, G.C. Jiang, and K.D. Xu, High temperature Raman spectra of sodium disilicate crystal, glass and its liquid, J. Non-Cryst. Solids, 282(2001), No. 1, p. 125. doi: 10.1016/S0022-3093(01)00335-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Share Article

    Article Metrics

    Article Views(1124) PDF Downloads(73) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return