Xing-hua Qin, Ye-hong Du, Peng-chao Zhang, Xin-yu Wang, Qiong-qiong Lu, Ai-kai Yang,  and Jun-cai Sun, Layered barium vanadate nanobelts for high-performance aqueous zinc-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1684-1692. https://doi.org/10.1007/s12613-021-2312-4
Cite this article as:
Xing-hua Qin, Ye-hong Du, Peng-chao Zhang, Xin-yu Wang, Qiong-qiong Lu, Ai-kai Yang,  and Jun-cai Sun, Layered barium vanadate nanobelts for high-performance aqueous zinc-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1684-1692. https://doi.org/10.1007/s12613-021-2312-4
Research Article

Layered barium vanadate nanobelts for high-performance aqueous zinc-ion batteries

+ Author Affiliations
  • Corresponding authors:

    Peng-chao Zhang    E-mail: zpc@dlmu.edu.cn

    Xin-yu Wang    E-mail: wangxinyu@dlmu.edu.cn

    Qiong-qiong Lu    E-mail: q.lu@ifw-dresden.de

  • Received: 5 April 2021Revised: 31 May 2021Accepted: 4 June 2021Available online: 5 June 2021
  • Aqueous zinc-ion batteries (ZIBs) are deemed as the idea option for large-scale energy storage systems owing to many alluring merits including low manufacture cost, environmental friendliness, and high operations safety. However, to develop high-performance cathode is still significant for practical application of ZIBs. Herein, Ba0.23V2O5·1.1H2O (BaVO) nanobelts were fabricated as cathode materials of ZIBs by a typical hydrothermal synthesis method. Benefiting from the increased interlayer distance of 1.31 nm by Ba2+ and H2O pre-intercalated, the obtained BaVO nanobelts showed an excellent initial discharge capacity of 378 mAh·g−1 at 0.1 A·g−1, a great rate performance (e.g., 172 mAh·g−1 at 5 A·g−1), and a superior capacity retention (93% after 2000 cycles at 5 A·g−1).

  • loading
  • [1]
    N. Nitta, F.X. Wu, J.T. Lee, and G. Yushin, Li-ion battery materials: Present and future, Mater. Today, 18(2015), No. 5, p. 252. doi: 10.1016/j.mattod.2014.10.040
    [2]
    L.Y. Shao, S.G. Wang, F.D. Wu, X.Y. Shi, Z.P. Sun, and Y.X. Tang, Pampas grass-inspired FeOOH nanobelts as high performance anodes for sodium ion batteries, J. Energy Chem., 54(2021), p. 138. doi: 10.1016/j.jechem.2020.05.051
    [3]
    J.M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414(2001), No. 6861, p. 359. doi: 10.1038/35104644
    [4]
    X.Y. Wang, L.W. Ma, P.C. Zhang, H.Y. Wang, S. Li, S.J. Ji, Z.S. Wen, and J.C. Sun, Vanadium pentoxide nanosheets as cathodes for aqueous zinc-ion batteries with high rate capability and long durability, Appl. Surf. Sci., 502(2020), art. No. 144207. doi: 10.1016/j.apsusc.2019.144207
    [5]
    M.S. Zhu, J.P. Hu, Q.Q. Lu, H.Y. Dong, D.D. Karnaushenko, C. Becker, D. Karnaushenko, Y. Li, H.M. Tang, Z. Qu, J. Ge, and O.G. Schmidt, A patternable and in situ formed polymeric zinc blanket for a reversible zinc anode in a skin-mountable microbattery, Adv. Mater., 33(2021), No. 8, art. No. 2007497. doi: 10.1002/adma.202007497
    [6]
    S. Liu, G.L. Pan, G.R. Li, and X.P. Gao, Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries, J. Mater. Chem. A, 3(2015), No. 3, p. 959. doi: 10.1039/C4TA04644G
    [7]
    P. Canepa, G. Sai Gautam, D.C. Hannah, R. Malik, M. Liu, K.G. Gallagher, K.A. Persson, and G. Ceder, Odyssey of multivalent cathode materials: Open questions and future challenges, Chem. Rev., 117(2017), No. 5, p. 4287. doi: 10.1021/acs.chemrev.6b00614
    [8]
    T. Hu, Z.Y. Feng, Y.F. Zhang, Y.Y. Liu, J.J. Sun, J.Q. Zheng, H.M. Jiang, P. Wang, X.Y. Dong, and C.G. Meng, “Double guarantee mechanism” of Ca2+-intercalation and rGO-integration ensures hydrated vanadium oxide with high performance for aqueous zinc-ion batteries, Inorg. Chem. Front., 8(2021), No. 1, p. 79. doi: 10.1039/D0QI00954G
    [9]
    Y.H. Du, X.Y. Wang, and J.C. Sun, Tunable oxygen vacancy concentration in vanadium oxide as mass-produced cathode for aqueous zinc-ion batteries, Nano Res., 14(2021), No. 3, p. 754. doi: 10.1007/s12274-020-3109-x
    [10]
    X.Y. Wang, X.H. Qin, Q.Q. Lu, M.M. Han, A. Omar, and D. Mikhailova, Mixed phase sodium manganese oxide as cathode for enhanced aqueous zinc-ion storage, Chin. J. Chem. Eng., 28(2020), No. 8, p. 2214. doi: 10.1016/j.cjche.2020.05.015
    [11]
    Y. Dong, M. Jia, Y.Y. Wang, J.Z. Xu, Y.C. Liu, L.F. Jiao, and N. Zhang, Long-life zinc/vanadium pentoxide battery enabled by a concentrated aqueous ZnSO4 electrolyte with proton and zinc ion co-intercalation, ACS Appl. Energy Mater., 3(2020), No. 11, p. 11183. doi: 10.1021/acsaem.0c02126
    [12]
    N. Zhang, Y. Dong, Y.Y. Wang, Y.X. Wang, J.J. Li, J.Z. Xu, Y.C. Liu, L.F. Jiao, and F.Y. Cheng, Ultrafast rechargeable zinc battery based on high-voltage graphite cathode and stable nonaqueous electrolyte, ACS Appl. Mater. Interfaces, 11(2019), No. 36, p. 32978. doi: 10.1021/acsami.9b10399
    [13]
    N. Zhang, X.Y. Chen, M. Yu, Z.Q. Niu, F.Y. Cheng, and J. Chen, Materials chemistry for rechargeable zinc-ion batteries, Chem. Soc. Rev., 49(2020), No. 13, p. 4203. doi: 10.1039/C9CS00349E
    [14]
    L. Xu, Y. Zhang, J. Zheng, H. Jiang, T. Hu, and C. Meng, Ammonium ion intercalated hydrated vanadium pentoxide for advanced aqueous rechargeable Zn-ion batteries, Mater. Today Energy, 18(2020), art. No. 100509. doi: 10.1016/j.mtener.2020.100509
    [15]
    S.D. Liu, L. Kang, J.M. Kim, Y.T. Chun, J. Zhang, and S.C. Jun, Recent advances in vanadium-based aqueous rechargeable zinc-ion batteries, Adv. Energy Mater., 10(2020), No. 25, art. No. 2000477. doi: 10.1002/aenm.202000477
    [16]
    Y.R. Wang, C.X. Wang, Z.G. Ni, Y.M. Gu, B.L. Wang, Z.W. Guo, Z. Wang, D. Bin, J. Ma, and Y.G. Wang, Binding zinc ions by carboxyl groups from adjacent molecules toward long-life aqueous zinc–organic batteries, Adv. Mater., 32(2020), No. 16, art. No. 2000338. doi: 10.1002/adma.202000338
    [17]
    G. Zampardi and F. La Mantia, Prussian blue analogues as aqueous Zn-ion batteries electrodes: Current challenges and future perspectives, Curr. Opin. Electrochem., 21(2020), p. 84. doi: 10.1016/j.coelec.2020.01.014
    [18]
    M.Q. Liu, Q.H. Zhao, H. Liu, J.L. Yang, X. Chen, L.Y. Yang, Y.H. Cui, W.Y. Huang, W.G. Zhao, A.Y. Song, Y.T. Wang, S.X. Ding, Y.L. Song, G.Y. Qian, H.B. Chen, and F. Pan, Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery, Nano Energy, 64(2019), art. No. 103942. doi: 10.1016/j.nanoen.2019.103942
    [19]
    Y.Y. Liu, Z.H. Pan, D. Tian, T. Hu, H.M. Jiang, J. Yang, J.J. Sun, J.Q. Zheng, C.G. Meng, and Y.F. Zhang, Employing “one for two” strategy to design polyaniline-intercalated hydrated vanadium oxide with expanded interlayer spacing for high-performance aqueous zinc-ion batteries, Chem. Eng. J., 399(2020), art. No. 125842. doi: 10.1016/j.cej.2020.125842
    [20]
    Y.F. Zhang, H.M. Jiang, L. Xu, Z.M. Gao, and C.G. Meng, Ammonium vanadium oxide [(NH4)2V4O9] sheets for high capacity electrodes in aqueous zinc ion batteries, ACS Appl. Energy Mater., 2(2019), No. 11, p. 7861. doi: 10.1021/acsaem.9b01299
    [21]
    D.P. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, and L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode, Nat. Energy, 1(2016), art. No. 16119. doi: 10.1038/nenergy.2016.119
    [22]
    F.W. Ming, H.F. Liang, Y.J. Lei, S. Kandambeth, M. Eddaoudi, and H.N. Alshareef, Layered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries, ACS Energy Lett., 3(2018), No. 10, p. 2602. doi: 10.1021/acsenergylett.8b01423
    [23]
    P. He, G.B. Zhang, X.B. Liao, M.Y. Yan, X. Xu, Q.Y. An, J. Liu, and L.Q. Mai, Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries, Adv. Energy Mater., 8(2018), No. 10, art. No. 1702463. doi: 10.1002/aenm.201702463
    [24]
    W.W. Zhang, C. Tang, B.X. Lan, L.N. Chen, W. Tang, C.L. Zuo, S.J. Dong, Q.Y. An, and P. Luo, K0.23V2O5 as a promising cathode material for rechargeable aqueous zinc ion batteries with excellent performance, J. Alloys Compd., 819(2020), art. No. 152971. doi: 10.1016/j.jallcom.2019.152971
    [25]
    H.B. Geng, M. Cheng, B. Wang, Y. Yang, Y.F. Zhang, and C.C. Li, Electronic structure regulation of layered vanadium oxide via interlayer doping strategy toward superior high-rate and low-temperature zinc-ion batteries, Adv. Funct. Mater., 30(2020), No. 6, art. No. 1907684. doi: 10.1002/adfm.201907684
    [26]
    J.Q. Zheng, C.F. Liu, M. Tian, X.X. Jia, E.P. Jahrman, G.T. Seidler, S.Q. Zhang, Y.Y. Liu, Y.F. Zhang, C.G. Meng, and G.Z. Cao, Fast and reversible zinc ion intercalation in Al-ion modified hydrated vanadate, Nano Energy, 70(2020), art. No. 104519. doi: 10.1016/j.nanoen.2020.104519
    [27]
    J.W. Li, K. McColl, X.K. Lu, S. Sathasivam, H.B. Dong, L.Q. Kang, Z.N. Li, S.Y. Zhao, A.G. Kafizas, R. Wang, D.J.L. Brett, P.R. Shearing, F. Corà, G.J. He, C.J. Carmalt, and I.P. Parkin, Multi-scale investigations of δ-Ni0.25V2O5·nH2O cathode materials in aqueous zinc-ion batteries, Adv. Energy Mater., 10(2020), No. 15, art. No. 2000058. doi: 10.1002/aenm.202000058
    [28]
    Y.F. Zhang, J.Q. Zheng, Y.F. Zhao, T. Hu, Z.M. Gao, and C.G. Meng, Fabrication of V2O5 with various morphologies for high-performance electrochemical capacitor, Appl. Surf. Sci., 377(2016), p. 385. doi: 10.1016/j.apsusc.2016.03.180
    [29]
    Y.H. Du, X.Y. Wang, J.Z. Man, and J.C. Sun, A novel organic–inorganic hybrid V2O5@polyaniline as high-performance cathode for aqueous zinc-ion batteries, Mater. Lett., 272(2020), art. No. 127813. doi: 10.1016/j.matlet.2020.127813
    [30]
    X.H. Qin, X.Y. Wang, J.C. Sun, Q.Q. Lu, A. Omar, and D. Mikhailova, Polypyrrole wrapped V2O5 nanowires composite for advanced aqueous zinc-ion batteries, Front. Energy Res., 8(2020), art. No. 199. doi: 10.3389/fenrg.2020.00199
    [31]
    N. Zhang, Y. Dong, M. Jia, X. Bian, Y.Y. Wang, M.D. Qiu, J.Z. Xu, Y.C. Liu, L.F. Jiao, and F.Y. Cheng, Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life, ACS Energy Lett., 3(2018), No. 6, p. 1366. doi: 10.1021/acsenergylett.8b00565
    [32]
    Y. Xu, X.S. Han, L. Zheng, W.S. Yan, and Y. Xie, Pillar effect on cyclability enhancement for aqueous lithium ion batteries: A new material of β-vanadium bronze M0.33V2O5 (M = Ag, Na) nanowires, J. Mater. Chem., 21(2011), No. 38, p. 14466. doi: 10.1039/c1jm11910a
    [33]
    X. Wang, B.J. Xi, X.J. Ma, Z.Y. Feng, Y.X. Jia, J.K. Feng, Y.T. Qian, and S.L. Xiong, Boosting zinc-ion storage capability by effectively suppressing vanadium dissolution based on robust layered barium vanadate, Nano Lett., 20(2020), No. 4, p. 2899. doi: 10.1021/acs.nanolett.0c00732
    [34]
    F.J. Tang, W.J. Zhou, M.F. Chen, J.Z. Chen, and J.L. Xu, Flexible free-standing paper electrodes based on reduced graphene oxide/δ-NaxV2O5·nH2O nanocomposite for high-performance aqueous zinc-ion batteries, Electrochim. Acta, 328(2019), art. No. 135137. doi: 10.1016/j.electacta.2019.135137
    [35]
    T.Y. Wei, Q. Li, G.Z. Yang, and C.X. Wang, Highly reversible and long-life cycling aqueous zinc-ion battery based on ultrathin (NH4)2V10O25·8H2O nanobelts, J. Mater. Chem. A, 6(2018), No. 41, p. 20402. doi: 10.1039/C8TA06626D
    [36]
    C. Xia, J. Guo, Y.J. Lei, H.F. Liang, C. Zhao, and H.N. Alshareef, Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode, Adv. Mater., 30(2018), No. 5, art. No. 1705580. doi: 10.1002/adma.201705580
    [37]
    G.Z. Yang, T.Y. Wei, and C.X. Wang, Self-healing lamellar structure boosts highly stable zinc-storage property of bilayered vanadium oxides, ACS Appl. Mater. Interfaces, 10(2018), No. 41, p. 35079. doi: 10.1021/acsami.8b10849
    [38]
    P. He, M.Y. Yan, G.B. Zhang, R.M. Sun, L.N. Chen, Q.Y. An, and L.Q. Mai, Layered VS2 nanosheet-based aqueous Zn ion battery cathode, Adv. Energy Mater., 7(2017), No. 11, art. No. 1601920. doi: 10.1002/aenm.201601920
    [39]
    G.L. Li, Z. Yang, Y. Jiang, C.H. Jin, W. Huang, X.L. Ding, and Y.H. Huang, Towards polyvalent ion batteries: A zinc-ion battery based on NASICON structured Na3V2(PO4)3, Nano Energy, 25(2016), p. 211. doi: 10.1016/j.nanoen.2016.04.051
    [40]
    B.X. Lan, Z. Peng, L.N. Chen, C. Tang, S.J. Dong, C. Chen, M. Zhou, C. Chen, Q.Y. An, and P. Luo, Metallic silver doped vanadium pentoxide cathode for aqueous rechargeable zinc ion batteries, J. Alloys Compd., 787(2019), p. 9. doi: 10.1016/j.jallcom.2019.02.078
    [41]
    M.H. Alfaruqi, V. Mathew, J.J. Song, S. Kim, S. Islam, D.T. Pham, J. Jo, S. Kim, J.P. Baboo, Z.L. Xiu, K.S. Lee, Y.K. Sun, and J. Kim, Electrochemical zinc intercalation in lithium vanadium oxide: A high-capacity zinc-ion battery cathode, Chem. Mater., 29(2017), No. 4, p. 1684. doi: 10.1021/acs.chemmater.6b05092
    [42]
    P. He, Y.L. Quan, X. Xu, M.Y. Yan, W. Yang, Q.Y. An, L. He, and L.Q. Mai, High-performance aqueous zinc-ion battery based on layered H2V3O8 nanowire cathode, Small, 13(2017), No. 47, art. No. 1702551. doi: 10.1002/smll.201702551
    [43]
    X.W. Wu, Y.H. Li, Y.H. Xiang, Z.X. Liu, Z.Q. He, X.M. Wu, Y.J. Li, L.Z. Xiong, C.C. Li, and J. Chen, The electrochemical performance of aqueous rechargeable battery of Zn/Na0.44MnO2 based on hybrid electrolyte, J. Power Sources, 336(2016), p. 35. doi: 10.1016/j.jpowsour.2016.10.053
    [44]
    Y.Q. Yang, Y. Tang, G.Z. Fang, L.T. Shan, J.S. Guo, W.Y. Zhang, C. Wang, L.B. Wang, J. Zhou, and S.Q. Liang, Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode, Energy Environ. Sci., 11(2018), No. 11, p. 3157. doi: 10.1039/C8EE01651H
    [45]
    N. Zhang, M. Jia, Y. Dong, Y.Y. Wang, J.Z. Xu, Y.C. Liu, L.F. Jiao, and F.Y. Cheng, Hydrated layered vanadium oxide as a highly reversible cathode for rechargeable aqueous zinc batteries, Adv. Funct. Mater., 29(2019), No. 10, art. No. 1807331. doi: 10.1002/adfm.201807331
    [46]
    X.Y. Wang, L.W. Ma, and J.C. Sun, Vanadium pentoxide nanosheets in-situ spaced with acetylene black as cathodes for high-performance zinc-ion batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 44, p. 41297. doi: 10.1021/acsami.9b13103
    [47]
    M.Y. Yan, P. He, Y. Chen, S.Y. Wang, Q.L. Wei, K.N. Zhao, X. Xu, Q.Y. An, Y. Shuang, Y.Y. Shao, K.T. Mueller, L.Q. Mai, J. Liu, and J.H. Yang, Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries, Adv. Mater., 30(2018), No. 1, art. No. 1703725. doi: 10.1002/adma.201703725
    [48]
    L.Y. Shao, J.Z. Hong, S.G. Wang, F.D. Wu, F. Yang, X.Y. Shi, and Z.P. Sun, Urchin-like FeS2 hierarchitectures wrapped with N-doped multi-wall carbon nanotubes@rGO as high-rate anode for sodium ion batteries, J. Power Sources, 491(2021), art. No. 229627. doi: 10.1016/j.jpowsour.2021.229627
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(1425) PDF Downloads(51) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return