Hailong Zhao, Longfei Li,  and Qiang Feng, Isothermal oxidation behavior of Nb-bearing austenitic cast steels at 950°C, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 814-824. https://doi.org/10.1007/s12613-021-2314-2
Cite this article as:
Hailong Zhao, Longfei Li,  and Qiang Feng, Isothermal oxidation behavior of Nb-bearing austenitic cast steels at 950°C, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 814-824. https://doi.org/10.1007/s12613-021-2314-2
Research Article

Isothermal oxidation behavior of Nb-bearing austenitic cast steels at 950°C

+ Author Affiliations
  • Corresponding authors:

    Longfei Li    E-mail: lilf@skl.ustb.edu.cn

    Qiang Feng    E-mail: qfeng@skl.ustb.edu.cn

  • Received: 31 March 2021Revised: 9 June 2021Accepted: 9 June 2021Available online: 11 June 2021
  • The oxidation behaviors of three austenitic cast steels with different morphologies of primary carbides at 950°C in air were investigated using scanning electron microscopy, energy dispersive spectroscopy, and focused ion beam/transmission electron microscopy. Their oxidation kinetics followed a logarithmic law, and the oxidation rate can be significantly decreased as long as a continuous silica layer formed at the scale/substrate interface. When the local Si concentration was inadequate, internal oxidation occurred beneath the oxide scale. The spallation of oxides during cooling can be inhibited with the formation of internal oxidation, owing to the reduced mismatch stress between the oxide scale and the substrate. The “Chinese-script” primary Nb(C,N) was superior to the dispersed primary Nb(C,N) in suppressing the oxidation penetration in the interdendritic region by supplying a high density of quick-diffusion Cr channels. In addition, the innermost and outermost oxidation layers were enriched with Cr, whereas the Cr evaporation in the outermost layer was significant when the water vapor concentration in the environment was high enough. These findings further the understanding regarding the oxidation behavior of austenitic cast steels and will promote the alloy development for exhaust components.
  • loading
  • [1]
    P.O. Santacreu, L. Faivre, and A. Acher, Life prediction approach for stainless steel exhaust manifold, SAE Int. J. Passeng. Cars Mech. Syst., 5(2012), No. 2, p. 904. doi: 10.4271/2012-01-0732
    [2]
    A.Y. Karnik and M.H. Shelby, Effect of exhaust gas temperature limits on the peak power performance of a turbocharged gasoline engine, J. Eng. Gas Turbines Power, 132(2010), No. 11, art. No. 112801. doi: 10.1115/1.4000856
    [3]
    F. Ohmenhäuser, C. Schwarz, S. Thalmair, and H.S. Evirgen, Constitutive modeling of the thermo-mechanical fatigue and lifetime behavior of the cast steel 1.4849, Mater. Des., 64(2014), p. 631. doi: 10.1016/j.matdes.2014.08.016
    [4]
    Y. Inoue and M. Kikuchi, Present and future trends of stainless steel for automotive exhaust system, Nippon Steel Tech. Rep., 2003, No. 88, p. 62.
    [5]
    G.A. Çelik, M.I.T. Tzini, Ş. Polat, Ş.H. Atapek, and G.N. Haidemenopoulos, Thermal and microstructural characterization of a novel ductile cast iron modified by aluminum addition, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 190. doi: 10.1007/s12613-019-1876-8
    [6]
    J.J. Yan, X.F. Huang, and W.G. Huang, High-temperature oxidation behavior of 9Cr–5Si–3Al ferritic heat-resistant steel, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1244. doi: 10.1007/s12613-019-1961-z
    [7]
    K. Matsumoto, M. Tojo, Y. Jinnai, N. Hayashi, and S. Ibaraki, Development of compact and high performance turbocharger for 1050°C exhaust gas, Mitsubishi Heavy Ind. Tech. Rev., 45(2008), No. 3, p. 2.
    [8]
    H. Singh, B.S. Sidhu, D. Puri, and S. Prakash, Use of plasma spray technology for deposition of high temperature oxidation/corrosion resistant coatings – A review, Mater. Corros., 58(2007), No. 2, p. 92. doi: 10.1002/maco.200603985
    [9]
    J.M. Francis and J.A. Jutson, The role of silicon in determining the oxidation resistance of an austenitic steel, Mater. Sci. Eng., 4(1969), No. 2-3, p. 84. doi: 10.1016/0025-5416(69)90047-0
    [10]
    M.J. Bennett, G. Dearnaley, M.R. Houlton, R.W.M. Hawes, P.D. Goode, and M.A. Wilkins, The influence of surface ion implantation upon the oxidation behaviour of a 20% Cr–25% Ni, niobium stabilized austenitic stainless steel, in carbon dioxide, at 825°C, Corros. Sci., 20(1980), No. 1, p. 73. doi: 10.1016/0010-938X(80)90112-2
    [11]
    R.C. Lobb, J.A. Sasse, and H.E. Evans, Dependence of oxidation behaviour on silicon content of 20%Cr austenitic steels, Mater. Sci. Technol., 5(1989), No. 8, p. 828. doi: 10.1179/mst.1989.5.8.828
    [12]
    R.K. Wild, High temperature oxidation of austenitic stainless steel in low oxygen pressure, Corros. Sci., 17(1977), No. 2, p. 87. doi: 10.1016/0010-938X(77)90011-7
    [13]
    S.N. Basu and G.J. Yurek, Effect of alloy grain size and silicon content on the oxidation of austenitic Fe–Cr–Ni–Mn–Si alloys in pure O2, Oxid. Met., 36(1991), No. 3-4, p. 281. doi: 10.1007/BF00662967
    [14]
    H.E. Evans and A.T. Donaldson, Silicon and chromium depletion during the long-term oxidation of thin-sectioned austenitic steel, Oxid. Met., 50(1998), No. 5-6, p. 457. doi: 10.1023/A:1018808925756
    [15]
    Y. Behnamian, A. Mostafaei, A. Kohandehghan, B.S. Amirkhiz, D. Serate, Y.F. Sun, S.B. Liu, E. Aghaie, Y.M. Zeng, M. Chmielus, W.Y. Zheng, D. Guzonas, W.X. Chen, and J.L. Luo, A comparative study of oxide scales grown on stainless steel and nickel-based superalloys in ultra-high temperature supercritical water at 800°C, Corros. Sci., 106(2016), p. 188. doi: 10.1016/j.corsci.2016.02.004
    [16]
    Z.B. Zheng, S. Wang, J. Long, J. Wang, and K.H. Zheng, Effect of rare earth elements on high temperature oxidation behaviour of austenitic steel, Corros. Sci., 164(2020), art. No. 108359. doi: 10.1016/j.corsci.2019.108359
    [17]
    C. Gu, R.Z. Liu, C.D. Wang, Y.F. Sun, and S.J. Zhang, Effect of aluminum on microstructure and high-temperature oxidation resistance of austenitic heat-resistant steel, Metals, 10(2020), No. 2, art. No. 176. doi: 10.3390/met10020176
    [18]
    T. Okuyama, T. Higashizono, N.H.K. Luan, and M. Kudo, Effect of Nb on thermal-shock resistance of austenitic heat resistant cast steel, Mater. Trans., 61(2020), No. 9, p. 1711. doi: 10.2320/matertrans.MT-M2020121
    [19]
    F. Tholence and M. Norell, High temperature corrosion of cast alloys in exhaust environments. II—Cast stainless steels, Oxid. Met., 69(2008), No. 1-2, p. 37. doi: 10.1007/s11085-007-9082-x
    [20]
    N. Xu, D. Monceau, D. Young, and J. Furtado, High temperature corrosion of cast heat resisting steels in CO + CO2 gas mixtures, Corros. Sci., 50(2008), No. 8, p. 2398. doi: 10.1016/j.corsci.2008.06.001
    [21]
    D. Oquab, N. Xu, D. Monceau, and D.J. Young, Subsurface microstructural changes in a cast heat resisting alloy caused by high temperature corrosion, Corros. Sci., 52(2010), No. 1, p. 255. doi: 10.1016/j.corsci.2009.09.014
    [22]
    M.P. Brady, G. Muralidharan, D.N. Leonard, J.A. Haynes, R.G. Weldon, and R.D. England, Long-term oxidation of candidate cast iron and stainless steel exhaust system alloys from 650 to 800℃ in air with water vapor, Oxid. Met., 82(2014), No. 5-6, p. 359. doi: 10.1007/s11085-014-9496-1
    [23]
    J.B. Yan, Y.M. Gao, L. Liang, Z.Z. Ye, Y.F. Li, W. Chen, and J.J. Zhang, Effect of yttrium on the cyclic oxidation behaviour of HP40 heat-resistant steel at 1373 K, Corros. Sci., 53(2011), No. 1, p. 329. doi: 10.1016/j.corsci.2010.09.039
    [24]
    Y.C. Liu, W.F. Wei, L. Benum, M. Oballa, M. Gyorffy, and W.X. Chen, Oxidation behavior of Ni–Cr–Fe-based alloys: Effect of alloy microstructure and silicon content, Oxid. Met., 73(2010), No. 1-2, p. 207. doi: 10.1007/s11085-009-9172-z
    [25]
    Y.H. Zhang, M. Li, L.A. Godlewski, J.W. Zindel, and Q. Feng, Creep behavior at 1273 K (1000 °C) in Nb-bearing austenitic heat-resistant cast steels developed for exhaust component applications, Metall. Mater. Trans. A, 47(2016), No. 7, p. 3289. doi: 10.1007/s11661-016-3544-1
    [26]
    H.L. Zhao, C.C. Engler-PintoJr, J. Zindel, L. Godlewski, Y.H. Zhang, Q. Feng, and M. Li, The effect of metal-carbide morphology on the thermomechanical fatigue (TMF) behavior of cast austenitic alloys for exhaust manifolds, Procedia Eng., 133(2015), p. 669. doi: 10.1016/j.proeng.2015.12.648
    [27]
    H.L. Zhao, C.C. Engler-PintoJr, J.Y. Tong, L.A. Godlewski, J.W. Zindel, L.F. Li, M. Li, and Q. Feng, Mechanical response and dislocation substructure of a cast austenitic steel under low cycle fatigue at elevated temperatures, Mater. Sci. Eng. A, 703(2017), p. 422. doi: 10.1016/j.msea.2017.07.030
    [28]
    Y.H. Zhang, M. Li, L.A. Godlewski, J.W. Zindel, and Q. Feng, Effects of N/C ratio on solidification behaviors of novel Nb-bearing austenitic heat-resistant cast steels for exhaust components of gasoline engines, Metall. Mater. Trans. A, 48(2017), No. 3, p. 1151. doi: 10.1007/s11661-016-3920-x
    [29]
    E.A.A.G. Ribeiro, R. Papaléo, and J.R.C. Guimarães, Microstructure and creep behavior of a niobium alloyed cast heat-resistant 26 pct Cr steel, Metall. Trans. A, 17(1986), No. 4, p. 691. doi: 10.1007/BF02643989
    [30]
    J.P. Shingledecker, P.J. Maziasz, N.D. Evans, and M.J. Pollard, Creep behavior of a new cast austenitic alloy, Int. J. Press. Vessels Pip., 84(2007), No. 1-2, p. 21. doi: 10.1016/j.ijpvp.2006.09.014
    [31]
    T. Onishi, S. Nakakubo, and M. Takeda, Calculations of internal oxidation rate equations and boundary conditions between internal and external oxidation in silicon containing steels, Mater. Trans., 51(2010), No. 3, p. 482. doi: 10.2320/matertrans.M2009256
    [32]
    C. Wagner, Reaktionstypen bei der oxydation von legierungen, Z. Elektrochem., 63(1959), No. 7, p. 772.
    [33]
    H.E. Evans, Modelling oxide spallation, Mater. High Temp., 12(1994), No. 2-3, p. 219. doi: 10.1080/09603409.1994.11689489
    [34]
    C.C. Lee, C.L. Tien, W.S. Sheu, and C.C. Jaing, An apparatus for the measurement of internal stress and thermal expansion coefficient of metal oxide films, Rev. Sci. Instrum., 72(2001), No. 4, p. 2128. doi: 10.1063/1.1357228
    [35]
    W. Qu, L. Jian, J.M. Hill, and D.G. Ivey, Electrical and microstructural characterization of spinel phases as potential coatings for SOFC metallic interconnects, J. Power Sources, 153(2006), No. 1, p. 114. doi: 10.1016/j.jpowsour.2005.03.137
    [36]
    Y. Saito, T. Maruyama, and T. Amano, Adherence of oxide scale formed on Ni–20Cr–1Si alloys with small additions of rare earth elements, Mater. Sci. Eng., 87(1987), p. 275. doi: 10.1016/0025-5416(87)90389-2
    [37]
    H. Fujikawa, T. Morimoto, Y. Nishiyama, and S.B. Newcomb, The effects of small additions of yttrium on the high-temperature oxidation resistance of a Si-containing austenitic stainless steel, Oxid. Met., 59(2003), No. 1-2, p. 23. doi: 10.1023/A:1023061814413
    [38]
    A. Paúl, R. Sánchez, O.M. Montes, and J.A. Odriozola, The role of silicon in the reactive-elements effect on the oxidation of conventional austenitic stainless steel, Oxid. Met., 67(2007), No. 1-2, p. 87. doi: 10.1007/s11085-006-9046-6
    [39]
    E.J. Opila, D.L. Myers, N.S. Jacobson, I.M.B. Nielsen, D.F. Johnson, J.K. Olminsky, and M.D. Allendorf, Theoretical and experimental investigation of the thermochemistry of CrO2(OH)2(g), J. Phys. Chem. A, 111(2007), No. 10, p. 1971. doi: 10.1021/jp0647380
    [40]
    Y.B. Zhang, X.Y. Hu, C.R. Li, W.W. Xu, and Y.T. Zhao, Composition design, phase transitions of a new polycrystalline Ni–Cr–Co–W base superalloy and its isothermal oxidation dynamics behaviors at 1300°C, Mater. Des., 129(2017), p. 26. doi: 10.1016/j.matdes.2017.05.028
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(1779) PDF Downloads(54) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return