Cite this article as: |
Jihong Zheng, Liangxin Zhu, Zhitao Shen, Fumin Li, Lanyu Ling, Huilin Li, and Chong Chen, Effects of the incorporation amounts of CdS and Cd(SCN2H4)2Cl2 on the performance of perovskite solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 283-291. https://doi.org/10.1007/s12613-021-2316-0 |
Lanyu Ling E-mail: 10110131@henu.edu.cn
Huilin Li E-mail: leehl@vip.henu.edu.cn
Chong Chen E-mail: chongchen@henu.edu.cn
An excellent organolead halide perovskite film is important for the good performance of perovskite solar cells (PSCs). However, defects in perovskite crystals can affect the photovoltaic properties and stability of solar cells. To solve this problem, this study incorporated a complex of CdS and Cd(SCN2H4)2Cl2 into the CH3NH3PbI3 active layer. The effects of different doping concentrations of CdS and Cd(SCN2H4)2Cl2 on the performance and stability of PSCs were analyzed. Results showed that doping appropriate incorporation concentrations of CdS and Cd(SCN2H4)2Cl2 in CH3NH3PbI3 can improve the performance of the prepared solar cells. In specific, CdS and Cd(SCN2H4)2Cl2 can effectively passivate the defects in perovskite crystals, thereby suppressing the charge recombination in PSCs and promoting the charge extraction at the TiO2/perovskite interface. Due to the reduction of perovskite crystal defects and the enhancement of compactness of the CdS:Cd(SCN2H4)2Cl2:CH3NH3PbI3 composite film, the stability of PSCs is significantly improved.
[1] |
W.J. Yin, J.H. Yang, J. Kang, Y.F. Yan, and S.H. Wei, Halide perovskite materials for solar cells: A theoretical review, J. Mater. Chem. A, 3(2015), No. 17, p. 8926. doi: 10.1039/C4TA05033A
|
[2] |
C.B. Fei, B. Li, R. Zhang, H.Y. Fu, J.J. Tian, and G.Z. Cao, Highly efficient and stable perovskite solar cells based on monolithically grained CH3NH3PbI3 film, Adv. Energy Mater., 7(2017), No. 9, art. No. 1602017. doi: 10.1002/aenm.201602017
|
[3] |
X.X. Gao, W. Luo, Y. Zhang, R.Y. Hu, B. Zhang, A. Züttel, Y.Q. Feng, and M.K. Nazeeruddin, Stable and high-efficiency methylammonium-free perovskite solar cells, Adv. Mater., 32(2020), No. 9, art. No. 1905502. doi: 10.1002/adma.201905502
|
[4] |
H.B. Lee, N. Kumar, M.M. Ovhal, Y.J. Kim, Y.M. Song, and J.W. Kang, Dopant-free, amorphous-crystalline heterophase SnO2 electron transport bilayer enables >20% efficiency in triple-cation perovskite solar cells, Adv. Funct. Mater., 30(2020), No. 24, art. No. 2001559. doi: 10.1002/adfm.202001559
|
[5] |
Q. Lou, H.L. Li, Q.S. Huang, Z.T. Shen, F.M. Li, Q. Du, M.Q. Jin, and C. Chen, Multifunctional CNT:TiO2 additives in spiro-OMeTAD layer for highly efficient and stable perovskite solar cells, EcoMat, 3(2021), No. 3, art. No. e12099. doi: 10.1002/eom2.12099
|
[6] |
C.Q. Ma and N.G. Park, A realistic methodology for 30% efficient perovskite solar cells, Chem, 6(2020), No. 6, p. 1254. doi: 10.1016/j.chempr.2020.04.013
|
[7] |
H. Min, D.Y. Lee, J.Kim, G. Kim, K.S. Lee, J. Kim, M.J. Paik, Y.K. Kim, K.S. Kim, M.G. Kim, T.J. Shin, and S. Il Seok, Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes, Nature, 598(2021), No. 7881, p. 444. doi: 10.1038/s41586-021-03964-8
|
[8] |
G.H. Ren, W.B. Han, Y.Y. Deng, W. Wu, Z.W. Li, J.X. Guo, H.C. Bao, C.Y. Liu, and W.B. Guo, Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: A review, J. Mater. Chem. A, 9(2021), No. 8, p. 4589. doi: 10.1039/D0TA11564A
|
[9] |
A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131(2009), No. 17, p. 6050. doi: 10.1021/ja809598r
|
[10] |
S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 342(2013), No. 6156, p. 341. doi: 10.1126/science.1243982
|
[11] |
J.L. Yang, K.M. Fransishyn, and T.L. Kelly, Comparing the effect of mesoporous and planar metal oxides on the stability of methylammonium lead iodide thin films, Chem. Mater., 28(2016), No. 20, p. 7344. doi: 10.1021/acs.chemmater.6b02744
|
[12] |
Y. Zhao, Q.F. Ye, Z.M. Chu, F. Gao, X.W. Zhang, and J.B. You, Recent progress in high-efficiency planar-structure perovskite solar cells, Energy Environ. Mater., 2(2019), No. 2, p. 93. doi: 10.1002/eem2.12042
|
[13] |
H.Y. Zhang, R. Li, W.W. Liu, M. Zhang, and M. Guo, Research progress in lead-less or lead-free three-dimensional perovskite absorber materials for solar cells, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 387. doi: 10.1007/s12613-019-1748-2
|
[14] |
H. Lu, W. Tian, B.K. Gu, Y.Y. Zhu, and L. Li, TiO2 electron transport bilayer for highly efficient planar perovskite solar cell, Small, 13(2017), No. 38, art. No. 1701535. doi: 10.1002/smll.201701535
|
[15] |
F. Shahvaranfard, M. Altomare, Y. Hou, S. Hejazi, W. Meng, B. Osuagwu, N. Li, C.J. Brabec, and P. Schmuki, Engineering of the electron transport layer/perovskite interface in solar cells designed on TiO2 rutile nanorods, Adv. Funct. Mater., 30(2020), No. 10, art. No. 1909738. doi: 10.1002/adfm.201909738
|
[16] |
J.S. Manser, M.I. Saidaminov, J.A. Christians, O.M. Bakr, and P.V. Kamat, Making and breaking of lead halide perovskites, Acc. Chem. Res., 49(2016), No. 2, p. 330. doi: 10.1021/acs.accounts.5b00455
|
[17] |
G.J.A.H. Wetzelaer, M. Scheepers, A.M. Sempere, C. Momblona, J. Ávila, and H.J. Bolink, Trap-assisted non-radiative recombination in organic-inorganic perovskite solar cells, Adv. Mater., 27(2015), No. 11, p. 1837. doi: 10.1002/adma.201405372
|
[18] |
W.J. Yin, T.T. Shi, and Y.F. Yan, Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber, Appl. Phys. Lett., 104(2014), No. 6, art. No. 063903. doi: 10.1063/1.4864778
|
[19] |
H.P. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song, H.S. Duan, Z.R. Hong, J.B. You, Y.S. Liu, Y. Yang, Interface engineering of highly efficient perovskitesolar cells, Sci., 345(2014), No. 6196, p. 542. doi: 10.1126/science.1254050
|
[20] |
W.X. Gong, H. Guo, H.Y. Zhang, J. Yang, H.Y. Chen, L.P. Wang, F. Hao, and X.B. Niu, Chlorine-doped SnO2 hydrophobic surfaces for large grain perovskite solar cells, J. Mater. Chem. C, 8(2020), No. 33, p. 11638. doi: 10.1039/D0TC00515K
|
[21] |
Q. Lou, G. Lou, R.X. Peng, Z.P. Liu, W. Wang, M.X. Ji, C. Chen, X.L. Zhang, C. Liu, and Z.Y. Ge, Synergistic effect of lewis base polymers and graphene in enhancing the efficiency of perovskite solar cells, ACS Appl. Energy Mater., 4(2021), No. 4, p. 3928. doi: 10.1021/acsaem.1c00299
|
[22] |
J.K. Wang, K. Datta, C.H.L. Weijtens, M.M. Wienk, and R.A.J. Janssen, Insights into fullerene passivation of SnO2 electron transport layers in perovskite solar cells, Adv. Funct. Mater., 29(2019), No. 46, art. No. 1905883. doi: 10.1002/adfm.201905883
|
[23] |
S. Sonmezoglu and S. Akin, Suppression of the interface-dependent nonradiative recombination by using 2-methylbenzimidazole as interlayer for highly efficient and stable perovskite solar cells, Nano Energy, 76(2020), art. No. 105127. doi: 10.1016/j.nanoen.2020.105127
|
[24] |
H.M. Yi, D. Wang, M.A. Mahmud, F. Haque, M.B. Upama, C. Xu, L.P. Duan, and A. Uddin, Bilayer SnO2 as electron transport layer for highly efficient perovskite solar cells, ACS Appl. Energy. Mater, 1(2018), No. 11, p. 6027. doi: 10.1021/acsaem.8b01076
|
[25] |
J.J. Yan, Z.C. Lin, Q.B. Cai, X.N. Wen, and C. Mu, Choline chloride-modified SnO2 achieving high output voltage in MAPbI3 perovskite solar cells, ACS Appl. Energy Mater, 3(2020), No. 4, p. 3504. doi: 10.1021/acsaem.0c00038
|
[26] |
H.M. Yates, S.M.P. Meroni, D. Raptis, J.L. Hodgkinson, and T.M. Watson, Flame assisted chemical vapour deposition NiO hole transport layers for mesoporous carbon perovskite cells, J. Mater. Chem. C, 7(2019), No. 42, p. 13235. doi: 10.1039/C9TC03922H
|
[27] |
C. Chen, Y. Zhai, F.M. Li, F.R. Tan, G.T. Yue, W.F. Zhang, and M.T. Wang, High efficiency CH3NH3PbI3:CdS perovskite solar cells with CuInS2 as the hole transporting layer, J. Power Sources, 341(2017), p. 396. doi: 10.1016/j.jpowsour.2016.12.027
|
[28] |
M. Samiee, S. Konduri, B. Ganapathy, R. Kottokkaran, H.A. Abbas, A. Kitahara, P. Joshi, L. Zhang, M. Noack, and V. Dalal, Defect density and dielectric constant in perovskite solar cells, Appl. Phys. Lett., 105(2014), No. 15, art. No. 153502. doi: 10.1063/1.4897329
|
[29] |
M.X. Guo, F.M. Li, L.Y. Ling, and C. Chen, Electrochemical and atomic force microscopy investigations of the effect of CdS on the local electrical properties of CH3NH3PbI3: CdS perovskite solar cells, J. Mater. Chem. C, 5(2017), No. 46, p. 12112. doi: 10.1039/C7TC04377E
|
[30] |
G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B, 47(1993), No. 1, p. 558. doi: 10.1103/PhysRevB.47.558
|
[31] |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54(1996), No. 16, p. 11169. doi: 10.1103/PhysRevB.54.11169
|
[32] |
. P. E. Blöchl, Projector augmented-wave method. Phys. Rev. B, 1994, 50, 17953.
|
[33] |
H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13(1976), No. 12, p. 5188. doi: 10.1103/PhysRevB.13.5188
|
[34] |
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem., 27(2006), No. 15, p. 1787. doi: 10.1002/jcc.20495
|
[35] |
K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 44(2011), No. 6, p. 1272. doi: 10.1107/S0021889811038970
|
[36] |
L.X. Zhu, C. Chen, F.M. Li, Z.T. Shen, Y.J. Weng, Q.S. Huang, and M.T. Wang, Enhancing the efficiency and stability of perovskite solar cells by incorporating CdS and Cd(SCN2H4)2Cl2 into the CH3NH3PbI3 active layer, J. Mater. Chem. A, 7(2019), No. 3, p. 1124. doi: 10.1039/C8TA09933B
|
[37] |
T.Y. Wang, B. Daiber, J.M. Frost, S.A. Mann, E.C. Garnett, A. Walsh, and B. Ehrler, Indirect to direct bandgap transition in methylammonium lead halide perovskite, Energy Environ. Sci., 10(2017), No. 2, p. 509. doi: 10.1039/C6EE03474H
|
[38] |
N.K. Noel, A. Abate, S.D. Stranks, E.S. Parrott, V.M. Burlakov, A. Goriely, and H.J. Snaith, Enhanced photoluminescence and solar cell performance via lewis base passivation of organic–inorganic lead halide perovskites, ACS Nano, 8(2014), No. 10, p. 9815. doi: 10.1021/nn5036476
|
[39] |
H.R. Tan, A. Jain, O. Voznyy, X.Z. Lan, F.P. García de Arquer, J.Z. Fan, R. Quintero-Bermudez, M.J. Yuan, B. Zhang, Y.C. Zhao, F.J. Fan, P.C. Li, L.N. Quan, Y.B. Zhao, Z.H. Lu, Z.Y. Yang, S. Hoogland, and E.H. Sargent, Efficient and stable solution-processed planar perovskite solar cells via contact passivation, Sci., 355(2017), No. 6326, p. 722. doi: 10.1126/science.aai9081
|
[40] |
M.B. Johnston and L.M. Herz, Hybrid perovskites for photovoltaics: Charge-carrier recombination, diffusion, and radiative efficiencies, Acc. Chem. Res., 49(2016), No. 1, p. 146. doi: 10.1021/acs.accounts.5b00411
|
[41] |
G. Tumen-Ulzii, C.J. Qin, T. Matsushima, M.R. Leyden, U. Balijipalli, D. Klotz, and C. Adachi, Understanding the degradation of spiro-OMeTAD-based perovskite solar cells at high temperature, Sol. RRL, 4(2020), No. 10, art. No. 2000305. doi: 10.1002/solr.202000305
|
[42] |
Y.Q. Yang, J.H. Wu, X.P. Liu, Q.Y. Guo, X.B. Wang, L. Liu, Y. Ding, S.Y. Dai, and J.Y. Lin, Dual functional doping of KMnO4 in spiro-OMeTAD for highly effective planar perovskite solar cells, ACS Appl. Energy Mater., 2(2019), No. 3, p. 2188. doi: 10.1021/acsaem.8b02219
|
[43] |
J.A. Christians, R.C. Fung, and P.V. Kamat, An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide, J. Am. Chem. Soc., 136(2014), No. 2, p. 758. doi: 10.1021/ja411014k
|
[44] |
H.S. Kim, J.W. Lee, N. Yantara, P.P. Boix, S.A. Kulkarni, S. Mhaisalkar, M. Grätzel, and N.G. Park, High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer, Nano Lett., 13(2013), No. 6, p. 2412. doi: 10.1021/nl400286w
|