Meng-rong Wu, Ming-yue Gao, Shu-ya Zhang, Ru Yang, Yong-ming Chen, Shang-qing Sun, Jin-feng Xie, Xing-mei Guo, Fu Cao, and Jun-hao Zhang, High-performance lithium–sulfur battery based on porous N-rich g-C3N4 nanotubes via a self-template method, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1656-1665. https://doi.org/10.1007/s12613-021-2319-x
Cite this article as:
Meng-rong Wu, Ming-yue Gao, Shu-ya Zhang, Ru Yang, Yong-ming Chen, Shang-qing Sun, Jin-feng Xie, Xing-mei Guo, Fu Cao, and Jun-hao Zhang, High-performance lithium–sulfur battery based on porous N-rich g-C3N4 nanotubes via a self-template method, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1656-1665. https://doi.org/10.1007/s12613-021-2319-x
Research Article

High-performance lithium–sulfur battery based on porous N-rich g-C3N4 nanotubes via a self-template method

+ Author Affiliations
  • Corresponding authors:

    Xing-mei Guo    E-mail: guoxm@just.edu.cn

    Jun-hao Zhang    E-mail: jhzhang6@just.edu.cn

  • Received: 9 February 2021Revised: 17 June 2021Accepted: 18 June 2021Available online: 19 June 2021
  • The commercial development of lithium–sulfur batteries (Li–S) is severely limited by the shuttle effect of lithium polysulfides (LPSs) and the non-conductivity of sulfur. Herein, porous g-C3N4 nanotubes (PCNNTs) are synthesized via a self-template method and utilized as an efficient sulfur host material. The one-dimensional PCNNTs have a high specific surface area (143.47 m2·g−1) and an abundance of macro-/mesopores, which could achieve a high sulfur loading rate of 74.7wt%. A Li–S battery bearing the PCNNTs/S composite as a cathode displays a low capacity decay of 0.021% per cycle over 800 cycles at 0.5 C with an initial capacity of 704.8 mAh·g−1. PCNNTs with a tubular structure could alleviate the volume expansion caused by sulfur and lithium sulfide during charge/discharge cycling. High N contents could greatly enhance the adsorption capacity of the carbon nitride for LPSs. These synergistic effects contribute to the excellent cycling stability and rate performance of the PCNNTs/S composite electrode.

  • loading
  • [1]
    K.L. Zhang, F. Zhang, H.L. Pan, J. Yu, L. Wang, D. Wang, L.B. Wang, G. Hu, J.H. Zhang, and Y.T. Qian, Dual taming of polysufides by phosphorus-doped carbon for improving electrochemical performances of lithium–sulfur battery, Electrochim. Acta, 354(2020), art. No. 136648. doi: 10.1016/j.electacta.2020.136648
    [2]
    A. Iqbal, L. Chen, Y. Chen, Y.X. Gao, F. Chen, and D.C. Li, Lithium-ion full cell with high energy density using nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode and SiO–C composite anode, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1473. doi: 10.1007/s12613-018-1702-8
    [3]
    Y.C. Xue, M.Y. Gao, M.R. Wu, D.Q. Su, X.M. Guo, J. Shi, M.T. Duan, J.L. Chen, J.H. Zhang, and Q.H. Kong, A promising hard carbon−soft carbon composite anode with boosting sodium storage performance, ChemElectroChem, 7(2020), No. 19, p. 4010. doi: 10.1002/celc.202000932
    [4]
    K.L. Cheng, D.B. Mu, B.R. Wu, L. Wang, Y. Jiang, and R. Wang, Electrochemical performance of a nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries under different cut-off voltages, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 342. doi: 10.1007/s12613-017-1413-6
    [5]
    X.M. Guo, C. Qian, X.H. Wan, W. Zhang, H.W. Zhu, J.H. Zhang, H.X. Yang, S.L. Lin, Q.H. Kong, and T.X. Fan, Facile in situ fabrication of biomorphic Co2P–Co3O4/rGO/C as an efficient electrocatalyst for the oxygen reduction reaction, Nanoscale, 12(2020), No. 7, p. 4374. doi: 10.1039/C9NR10785A
    [6]
    J.X. Wu, Y.L. Cao, H.M. Zhao, J.F. Mao, and Z.P. Guo, The critical role of carbon in marrying silicon and graphite anodes for high-energy lithium-ion batteries, Carbon Energy, 1(2019), No. 1, p. 57. doi: 10.1002/cey2.2
    [7]
    Y.J. Liu, P. He, and H.S. Zhou, Rechargeable solid-state Li–air and Li–S batteries: Materials, construction, and challenges, Adv. Energy Mater., 8(2018), No. 4, art. No. 1701602. doi: 10.1002/aenm.201701602
    [8]
    A. Manthiram, S.H. Chung, and C.X. Zu, Lithium–sulfur batteries: Progress and prospects, Adv. Mater., 27(2015), No. 12, p. 1980. doi: 10.1002/adma.201405115
    [9]
    Z.Q. Ye, Y. Jiang, L. Li, F. Wu, and R.J. Chen, A high-efficiency CoSe electrocatalyst with hierarchical porous polyhedron nanoarchitecture for accelerating polysulfides conversion in Li–S batteries, Adv. Mater., 32(2020), No. 32, art. No. 2002168. doi: 10.1002/adma.202002168
    [10]
    H.J. Peng, J.Q. Huang, X.B. Cheng, and Q. Zhang, Review on high-loading and high-energy lithium–sulfur batteries, Adv. Energy Mater., 7(2017), No. 24, art. No. 1700260. doi: 10.1002/aenm.201700260
    [11]
    Z.Y. Xing, G.R. Li, S. Sy, and Z.W. Chen, Recessed deposition of TiN into N-doped carbon as a cathode host for superior Li–S batteries performance, Nano Energy, 54(2018), p. 1. doi: 10.1016/j.nanoen.2018.09.034
    [12]
    C.W. Shi, K.A. Owusu, X.M. Xu, T. Zhu, G.B. Zhang, W. Yang, and L.Q. Mai, 1D carbon-based nanocomposites for electrochemical energy storage, Small, 15(2019), No. 48, art. No. 1902348. doi: 10.1002/smll.201902348
    [13]
    Q.P. Wu, X.J. Zhou, J. Xu, F.H. Cao, and C.L. Li, Carbon-based derivatives from metal–organic frameworks as cathode hosts for Li–S batteries, J. Energy Chem., 38(2019), p. 94. doi: 10.1016/j.jechem.2019.01.005
    [14]
    Z.H. Fang, Y.F. Luo, H.C. Wu, L.J. Yan, F. Zhao, Q.Q. Li, S.S. Fan, and J.P. Wang, Mesoporous carbon nanotube aerogel–sulfur cathodes: A strategy to achieve ultrahigh areal capacity for lithium–sulfur batteries via capillary action, Carbon, 166(2020), p. 183. doi: 10.1016/j.carbon.2020.05.047
    [15]
    G.Z. Liu, Z. Zhang, W.Z. Tian, W.H. Chen, B.J. Xi, H.B. Li, J.K. Feng, and S.L. Xiong, Ni12P5 nanoparticles bound on graphene sheets for advanced lithium–sulfur batteries, Nanoscale, 12(2020), No. 19, p. 10760. doi: 10.1039/C9NR10680D
    [16]
    K.F. Chen and D.F. Xue, Multiple functional biomass-derived activated carbon materials for aqueous supercapacitors, lithium-ion capacitors and lithium–sulfur batteries, Chin. J. Chem., 35(2017), No. 6, p. 861. doi: 10.1002/cjoc.201600785
    [17]
    Y.B. Dou, W.J. Zhang, and A. Kaiser, Electrospinning of metal–organic frameworks for energy and environmental applications, Adv. Sci., 7(2020), No. 3, art. No. 1902590. doi: 10.1002/advs.201902590
    [18]
    T. Tang, T. Zhang, W. Li, X.X. Huang, X.B. Wang, H.L. Qiu, and Y.L. Hou, Mesoporous N-doped graphene prepared by a soft-template method with high performance in Li–S batteries, Nanoscale, 11(2019), No. 15, p. 7440. doi: 10.1039/C8NR09495K
    [19]
    Q.J. Shao, Z.S. Wu, and J. Chen, Two-dimensional materials for advanced Li–S batteries, Energy Storage Mater., 22(2019), p. 284. doi: 10.1016/j.ensm.2019.02.001
    [20]
    Z.X. Zeng, K.X. Li, K. Wei, Y.H. Dai, L.S. Yan, H.Q. Guo, and X.B. Luo, Fabrication of porous g-C3N4 and supported porous g-C3N4 by a simple precursor pretreatment strategy and their efficient visible-light photocatalytic activity, Chin. J. Catal., 38(2017), No. 3, p. 498. doi: 10.1016/S1872-2067(17)62763-3
    [21]
    H.S. Zhai, L. Cao, and X.H. Xia, Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction, Chin. Chem. Lett., 24(2013), No. 2, p. 103. doi: 10.1016/j.cclet.2013.01.030
    [22]
    Z.Y. Jia, H.Z. Zhang, Y. Yu, Y.Q. Chen, J.W. Yan, X.F. Li, and H.M. Zhang, Trithiocyanuric acid derived g-C3N4 for anchoring the polysulfide in Li–S batteries application, J. Energy Chem., 43(2020), p. 71. doi: 10.1016/j.jechem.2019.06.005
    [23]
    B. Song, Z.T. Zeng, G.M. Zeng, J.L. Gong, R. Xiao, S.J. Ye, M. Chen, C. Lai, P. Xu, and X. Tang, Powerful combination of g-C3N4 and LDHs for enhanced photocatalytic performance: A review of strategy, synthesis, and applications, Adv. Colloid Interface Sci., 272(2019), art. No. 101999. doi: 10.1016/j.cis.2019.101999
    [24]
    X. Li, K. Pan, Y. Qu, and G.F. Wang, One-dimension carbon self-doping g-C3N4 nanotubes: Synthesis and application in dye-sensitized solar cells, Nano Res., 11(2018), No. 3, p. 1322. doi: 10.1007/s12274-017-1747-4
    [25]
    Z.H. Bian, T. Yuan, Y. Xu, Y.P. Pang, H.F. Yao, J. Li, J.H. Yang, and S.Y. Zheng, Boosting Li–S battery by rational design of freestanding cathode with enriched anchoring and catalytic N-sites carbonaceous host, Carbon, 150(2019), p. 216. doi: 10.1016/j.carbon.2019.05.022
    [26]
    D. Zhang, X.M. Guo, X.Z. Tong, Y.F. Chen, M.T. Duan, J. Shi, C.W. Jiang, L.L. Hu, Q.H. Kong, and J.H. Zhang, High-performance battery-type supercapacitor based on porous biocarbon and biocarbon supported Ni–Co layered double hydroxide, J. Alloys Compd., 837(2020), art. No. 155529. doi: 10.1016/j.jallcom.2020.155529
    [27]
    D.Q. Su, M. Huang, J.H. Zhang, X.M. Guo, J.L. Chen, Y.C. Xue, A.H. Yuan, and Q.H. Kong, High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage, Nano Res., 13(2020), No. 10, p. 2862. doi: 10.1007/s12274-020-2944-0
    [28]
    X.M. Guo, C. Qian, R.H. Shi, W. Zhang, F. Xu, S.L. Qian, J.H. Zhang, H.X. Yang, A.H. Yuan, and T.X. Fan, Biomorphic Co–N–C/CoOx composite derived from natural chloroplasts as efficient electrocatalyst for oxygen reduction reaction, Small, 15(2019), No. 8, art. No. 1804855. doi: 10.1002/smll.201804855
    [29]
    X.Z. Tong, D.C. Zhou, M.J. Qiu, Y.S. Zhou, Y.L. Ai, X.M. Guo, J.H. Zhang, Y.B. Cai, and Q.H. Kong, Biomorphic NiO/Ni with a regular pore-array structure as a supercapacitor electrode material, Eur. J. Inorg. Chem., 2021(2021), No. 6, p. 562. doi: 10.1002/ejic.202000947
    [30]
    M. Huang, K. Mi, J.H. Zhang, H.L. Liu, T.T. Yu, A.H. Yuan, Q.H. Kong, and S.L. Xiong, MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage, J. Mater. Chem. A, 5(2017), No. 1, p. 266. doi: 10.1039/C6TA09030C
    [31]
    F. Zhou, Z. Li, X. Luo, T. Wu, B. Jiang, L.L. Lu, H.B. Yao, M. Antonietti, and S.H. Yu, Low cost metal carbide nanocrystals as binding and electrocatalytic sites for high performance Li–S batteries, Nano Lett., 18(2018), No. 2, p. 1035. doi: 10.1021/acs.nanolett.7b04505
    [32]
    X.F. Yang, X.J. Gao, Q. Sun, S.P. Jand, Y. Yu, Y. Zhao, X. Li, K. Adair, L.Y. Kuo, J. Rohrer, J.N. Liang, X.T. Lin, M.N. Banis, Y.F. Hu, H.Z. Zhang, X.F. Li, R.Y. Li, H.M. Zhang, P. Kaghazchi, T.K. Sham, and X.L. Sun, Promoting the transformation of Li2S2 to Li2S: Significantly increasing utilization of active materials for high-sulfur-loading Li–S batteries, Adv. Mater., 31(2019), No. 25, art. No. 1901220. doi: 10.1002/adma.201901220
    [33]
    S.B. Tu, X. Chen, X.X. Zhao, M.R. Cheng, P.X. Xiong, Y.W. He, Q. Zhang, and Y.H. Xu, A polysulfide-immobilizing polymer retards the shuttling of polysulfide intermediates in lithium–sulfur batteries, Adv. Mater., 30(2018), No. 45, art. No. 1804581. doi: 10.1002/adma.201804581
    [34]
    J.H. Zhang, M. Huang, B.J. Xi, K. Mi, A.H. Yuan, and S.L. Xiong, Systematic study of effect on enhancing specific capacity and electrochemical behaviors of lithium–sulfur batteries, Adv. Energy Mater., 8(2018), No. 2, art. No. 1701330. doi: 10.1002/aenm.201701330
    [35]
    Z.X. Bian, Z.H. Tang, J.F. Xie, J.H. Zhang, X.M. Guo, Y.J. Liu, A.H. Yuan, F. Zhang, and Q.H. Kong, Preparation and lithium storage performances of g-C3N4/Si nanocomposites as anode materials for lithium-ion battery, Front. Energy, 14(2020), No. 4, p. 759. doi: 10.1007/s11708-020-0810-0
    [36]
    Y.C. Xue, T.T. Yu, J.L. Chen, X.H. Wan, X.W. Cai, X.M. Guo, F. Zhang, W.W. Xiong, Y.J. Liu, Q.H. Kong, A.H. Yuan, and J.H. Zhang, Fabrication of GeO2 microspheres/hierarchical porous N-doped carbon with superior cyclic stability for Li-ion batteries, J. Solid State Chem., 286(2020), art. No. 121303. doi: 10.1016/j.jssc.2020.121303
    [37]
    J.A. Yu, L. Zhang, and H.J. Ji, Preparation of nanometer Cu6Sn5 and its application in lithium-ion batteries anode for mass production, Gen. Chem., 6(2020), No. 1, art. No. 180028. doi: 10.21127/yaoyigc20180028
    [38]
    L.F. Wang, M.M. Geng, X.N. Ding, C. Fang, Y. Zhang, S.S. Shi, Y. Zheng, K. Yang, C. Zhan, and X.D. Wang, Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 538. doi: 10.1007/s12613-020-2218-6
    [39]
    Q. Jiang, W.Q. Zhang, J.C. Zhao, P.H. Rao, and J.F. Mao, Superior sodium and lithium storage in strongly coupled amorphous Sb2S3 spheres and carbon nanotubes, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1194. doi: 10.1007/s12613-021-2259-5
    [40]
    J. Conder, C. Villevieille, S. Trabesinger, P. Novák, L. Gubler, and R. Bouchet, Electrochemical impedance spectroscopy of a Li–S battery: Part 1. Influence of the electrode and electrolyte compositions on the impedance of symmetric cells, Electrochim. Acta, 244(2017), p. 61. doi: 10.1016/j.electacta.2017.05.041
    [41]
    J.L. Chen, Z.X. Bian, M.R. Wu, M.Y. Gao, J. Shi, M.T. Duan, X.M. Guo, Y.J. Liu, J.H. Zhang, and Q.H. Kong, Preparation of CoSnO3/CNTs/S and its electrochemical performance as cathode material for lithium–sulfur batteries, ChemElectroChem, 7(2020), No. 20, p. 4209. doi: 10.1002/celc.202001081
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Share Article

    Article Metrics

    Article Views(868) PDF Downloads(53) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return