Xuchen Jin, Peihao Ye, Hongrui Ji, Zhuanxia Suo, Boxin Wei, Xuewen Li, and Wenbin Fang, Oxidation resistance of powder metallurgy Ti–45Al–10Nb alloy at high temperature, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2232-2240. https://doi.org/10.1007/s12613-021-2320-4
Cite this article as:
Xuchen Jin, Peihao Ye, Hongrui Ji, Zhuanxia Suo, Boxin Wei, Xuewen Li, and Wenbin Fang, Oxidation resistance of powder metallurgy Ti–45Al–10Nb alloy at high temperature, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2232-2240. https://doi.org/10.1007/s12613-021-2320-4
Research Article

Oxidation resistance of powder metallurgy Ti–45Al–10Nb alloy at high temperature

+ Author Affiliations
  • Corresponding author:

    Xuewen Li    E-mail: lixuewen@hrbust.edu.cn

  • Received: 4 March 2021Revised: 29 March 2021Accepted: 22 June 2021Available online: 24 June 2021
  • TiAl alloy with high Nb content, nominally Ti–45Al–10Nb, was prepared by powder metallurgy, and the oxidation resistance at 850, 900, and 950°C was investigated. The high-temperature oxidation-resistance mechanism and oxidation dynamics were discussed following the oxide skin morphology and microstructural evolution analysis. The oxide skin structures were similar for 850 and 900°C, with TiO2+Al2O3 mixture covering TiO2 with dispersed Nb2O5. At 950°C, the oxide skin was divided into four sublayers, from the outside to the parent metal: loose TiO2+Al2O3, dense Al2O3, dense TiO2+Nb2O5, and TiO2 matrix with dispersed Nb2O5. The Nb layer suppressed the outward diffusion of Ti atoms, hindering the growth of TiO2, and simultaneously promote the formation of a continuous Al2O3 protective layer, providing the alloy with long-term high-temperature oxidation resistance.
  • loading
  • [1]
    S. Naka, M. Thomas, and T. Khan, Potential and prospects of some intermetallic compounds for structural applications, [in] C.T. Liu, R.W. Cahn, and G. Sauthoff, eds., Ordered Intermetallics—Physical Metallurgy and Mechanical Behaviour, NATO ASI Series, vol 213. Springer, Dordrecht, 1992.
    [2]
    K. Uenishi and K.F. Kobayashi, Processing of intermetallic compounds for structural applications at high temperature, Intermetallics, 4(1996), Suppl.1, p. S95. doi: 10.1016/0966-9795(96)00016-7
    [3]
    J.P. Lin, X.J. Xu, Y.L. Wang, S.F. He, Y. Zhang, X.P. Song, and G.L. Chen, High temperature deformation behaviors of a high Nb containing TiAl alloy, Intermetallics, 15(2007), No. 5-6, p. 668. doi: 10.1016/j.intermet.2006.10.029
    [4]
    G. Chen, Y.B. Peng, G. Zheng, Z.X. Qi, M.Z. Wang, H.C. Yu, C.L. Dong, and C.T. Liu, Polysynthetic twinned TiAl single crystals for high-temperature applications, Nat. Mater., 15(2016), No. 8, p. 876. doi: 10.1038/nmat4677
    [5]
    Y.W. Kim and S.L. Kim, Advances in gammalloy materials-processes-application technology: Successes, dilemmas, and future, JOM, 70(2018), No. 4, p. 553. doi: 10.1007/s11837-018-2747-x
    [6]
    H. Wu and G.H. Fan, An overview of tailoring strain delocalization for strength-ductility synergy, Prog. Mater. Sci., 113(2020), art. No. 100675. doi: 10.1016/j.pmatsci.2020.100675
    [7]
    H. Wu, G.H. Fan, M. Huang, L. Geng, X.P. Cui, and H.L. Xie, Deformation behavior of brittle/ductile multilayered composites under interface constraint effect, Int. J. Plast., 89(2017), p. 96. doi: 10.1016/j.ijplas.2016.11.005
    [8]
    W. Yu, J.X. Zhou, Y.J. Yin, Z.X. Tu, X. Feng, H. Nan, J.P. Lin, and X.F. Ding, Effects of heat treatments on microstructures of TiAl alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1225. doi: 10.1007/s12613-021-2252-z
    [9]
    F. Appel, H. Clemens, and F.D. Fischer, Modeling concepts for intermetallic titanium aluminides, Prog. Mater. Sci., 81(2016), p. 55. doi: 10.1016/j.pmatsci.2016.01.001
    [10]
    H. Clemens and S. Mayer, Intermetallic titanium aluminides in aerospace applications - processing, microstructure and properties, Mater. High Temp., 33(2016), No. 4-5, p. 560. doi: 10.1080/09603409.2016.1163792
    [11]
    B.P. Bewlay, S. Nag, A. Suzuki, and M.J. Weimer, TiAl alloys in commercial aircraft engines, Mater. High Temp., 33(2016), No. 4-5, p. 549. doi: 10.1080/09603409.2016.1183068
    [12]
    L.L. Xiang, L.L. Zhao, Y.L. Wang, L.Q. Zhang, and J.P. Lin, Synergistic effect of Y and Nb on the high temperature oxidation resistance of high Nb containing TiAl alloys, Intermetallics, 27(2012), p. 6. doi: 10.1016/j.intermet.2012.01.015
    [13]
    H. Wu, M. Huang, X.W. Li, Y.P. Xia, Z. Wang, and G.H. Fan, Temperature-dependent reversed fracture behavior of multilayered TiBw/Ti–Ti(Al) composites, Int. J. Plast., 141(2021), art. No. 102998. doi: 10.1016/j.ijplas.2021.102998
    [14]
    J.J. Dai, J.Y. Zhu, C.Z. Chen, and F. Weng, High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review, J. Alloys Compd., 685(2016), p. 784. doi: 10.1016/j.jallcom.2016.06.212
    [15]
    J.J. Dai, H.J. Yu, J.Y. Zhu, F. Weng, and C.Z. Chen, Mechanical properties and high temperature oxidation behavior of Ti–Al coating reinforced by nitrides on Ti–6Al–4V alloy, Surf. Rev. Lett., 23(2016), No. 5, art. No. 1650031. doi: 10.1142/S0218625X16500311
    [16]
    Y.D. Fu, X.Q. Niu, L.J. Zhang, F. Yan, J. Zheng, and X.L. Meng, Phase composition of hot-dipped Ti–Al cladding on Ti6Al4V alloy, Heat Treat. Met., 40(2015), No. 3, p. 62.
    [17]
    X.M. Peng, C.Q. Xia, Z.H. Wang, Z. Huang, and J.H. Wang, Development of high temperature oxidation and protection of TiAl-based alloy, Chin. J. Nonferrous Met., 20(2010), No. 6, p. 1116.
    [18]
    W. Przybilla and M. Schütze, Growth stresses in the oxide scales on TiAl alloys at 800 and 900°C, Oxid. Met., 58(2002), No. 3/4, p. 337. doi: 10.1023/A:1020110905907
    [19]
    C. Leyens, R. Braun, M. Fröhlich, and P.E. Hovsepian, Recent progress in the coating protection of gamma titanium-aluminides, JOM, 58(2006), No. 1, p. 17. doi: 10.1007/s11837-006-0062-4
    [20]
    A. Rahmel, M. Schütze, and W.J. Quadakkers, Fundamentals of TiAl oxidation—A critical review, Werkst. Korros., 46(1995), No. 5, p. 271. doi: 10.1002/maco.19950460503
    [21]
    J.J. Dai, J.Y. Zhu, L. Zhuang, and S.Y. Li, Effect of surface aluminizing on long-term high-temperature thermal stability of TC4 titanium alloy, Surf. Rev. Lett., 23(2016), No. 2, art. No. 1550102. doi: 10.1142/S0218625X15501024
    [22]
    M. Yoshihara and K. Miura, Effects of Nb addition on oxidation behavior of TiAl, Intermetallics, 3(1995), No. 5, p. 357. doi: 10.1016/0966-9795(95)94254-C
    [23]
    X.Y. Cheng, X.J. Wan, and J.N. Shen, The effect of Nb on the oxida-tion behavior of TiAl alloy at high temperature, J. Chin. Soc. Corros. Prot., 22(2002), No. 2, p. 69.
    [24]
    S.H. Ouyang, B. Liu, J.B. Li, L.Y. Xu, and Y. Liu, Effect of Nb on high temperature oxidation behavior of powder metallurgy TiAl based alloy, Mater. Sci. Eng. Powder Metall., 20(2015), No. 4, p. 616.
    [25]
    S. Taniguchi, Y. Tachikawa, and T. Shibata, Influence of oxygen partial pressure on the oxidation behaviour of TiAl at 1300 K, Mater. Sci. Eng. A, 232(1997), No. 1-2, p. 47. doi: 10.1016/S0921-5093(97)00085-3
    [26]
    K. Kovács, I.V. Perczel, V.K. Josepovits, G. Kiss, F. Réti, and P. Deák, In situ surface analytical investigation of the thermal oxidation of Ti–Al intermetallics up to 1000°C, Appl. Surf. Sci., 200(2002), No. 1-4, p. 185. doi: 10.1016/S0169-4332(02)00875-9
    [27]
    T.N. Taylor and M.T. Paffett, Oxide properties of a γ-TiAl: A surface science study, Mater. Sci. Eng. A, 153(1992), No. 1-2, p. 584. doi: 10.1016/0921-5093(92)90255-Y
    [28]
    S. Das, The Al–O–Ti (Aluminum-oxygen-titanium) system, J. Phase Equilibria, 23(2002), No. 6, p. 525. doi: 10.1361/105497102770331271
    [29]
    H.L. Du, P.K. Datta, Z. Klusek, and J.S. Burnell-Gray, Nanoscale studies of the early stages of oxidation of a TiAl-base alloy, Oxid. Met., 62(2004), No. 3-4, p. 175. doi: 10.1007/s11085-004-7806-8
    [30]
    J. Shen, L. Zhou, and T. Li, Effects of surface-applied ceria on the stability of thermally growing chromia scale of FeCr alloys and 310steel, J. Mater. Sci., 33(1998), No. 24, p. 5815. doi: 10.1023/A:1004454132011
    [31]
    D. Vojtěch, J. Čížkovský, P. Novák, J. Šerák, and T. Fabián, Effect of niobium on the structure and high-temperature oxidation of TiAl–Ti5Si3 eutectic alloy, Intermetallics, 16(2008), No. 7, p. 896. doi: 10.1016/j.intermet.2008.04.005
    [32]
    S.K. Varma, A. Chan, and B.N. Mahapatra, Static and cyclic oxidation of Ti–44Al and Ti–44Al–xNb alloys, Oxid. Met., 55(2001), No. 5/6, p. 423. doi: 10.1023/A:1010351613733
    [33]
    M. Yoshihara and Y.W. Kim, Oxidation behavior of gamma alloys designed for high temperature applications, Intermetallics, 13(2005), No. 9, p. 952. doi: 10.1016/j.intermet.2004.12.007
    [34]
    M. Eckert, D. Kath, and K. Hilpert, Thermodynamic activities in the alloys of the Ti–Al–Nb system, Metall. Mater. Trans. A, 30(1999), No. 5, p. 1315. doi: 10.1007/s11661-999-0280-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(946) PDF Downloads(42) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return