Wenbiao Liu, Wenxuan Huang, Feng Rao, Zhanglei Zhu, Yongming Zheng, and Shuming Wen, Utilization of DTAB as a collector for the reverse flotation separation of quartz from fluorapatite, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 446-454. https://doi.org/10.1007/s12613-021-2321-3
Cite this article as:
Wenbiao Liu, Wenxuan Huang, Feng Rao, Zhanglei Zhu, Yongming Zheng, and Shuming Wen, Utilization of DTAB as a collector for the reverse flotation separation of quartz from fluorapatite, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 446-454. https://doi.org/10.1007/s12613-021-2321-3
Research Article

Utilization of DTAB as a collector for the reverse flotation separation of quartz from fluorapatite

+ Author Affiliations
  • Corresponding authors:

    Feng Rao    E-mail: fengrao@fzu.edu.cn

    Zhanglei Zhu    E-mail: zhu3748@gmail.com

  • Received: 20 March 2021Revised: 17 June 2021Accepted: 22 June 2021Available online: 24 June 2021
  • Reverse flotation desilication is an indispensable step for obtaining high-grade fluorapatite. In this work, dodecyltrimethylammonium bromide (DTAB) is recommended as an efficient collector for the reverse flotation separation of quartz from fluorapatite. Its collectivity for quartz and selectivity for fluorapatite were also compared with figures corresponding to the conventional collector dodecylamine hydrochloride (DAC) via microflotation experiments. The adsorption behaviors of DTAB and DAC on minerals were systematically investigated with surface chemical analyses, such as contact angle determination, zeta potential detection, and adsorption density measurement. The results revealed that compared to DAC, DTAB displayed a similar and strong collectivity for quartz, and it showed a better selectivity (or worse collectivity) for fluorapatite, resulting in a high-efficiency separation of the two minerals. The surface chemical analysis results showed that the adsorption ability of DTAB on the quartz surface was as strong as that of DAC, whereas the adsorption amount of DTAB on the fluorapatite surface was much lower than that of DAC, which is associated with the flotation performance. During the floatation separation of the actual ore, 8wt% fluorapatite with a higher grade can be obtained using DTAB in contrast to DAC. Therefore, DTAB is a promising collector for the high-efficiency purification and sustainable utilization of valuable fluorapatite recourses.

  • loading
  • [1]
    R.C. Santana, C.R. Duarte, C.H. Ataíde, and M.A.S. Barrozo, Flotation selectivity of phosphate ore: Effects of particle size and reagent concentration, Sep. Sci. Technol., 46(2011), No. 9, p. 1511. doi: 10.1080/01496395.2011.561268
    [2]
    R.C. Santana, A.C.C. Farnese, M.C.B. Fortes, C.H. Ataíde, and M.A.S. Barrozo, Influence of particle size and reagent dosage on the performance of apatite flotation, Sep. Purif. Technol., 64(2008), No. 1, p. 8. doi: 10.1016/j.seppur.2008.09.004
    [3]
    J.A.E. de Carvalho, P.R.G. Brandão, A.B. Henriques, P.S. de Oliveira, R.Z.L. Cançado, and G.R. de Silva, Selective flotation of apatite from micaceous minerals using patauá palm tree oil collector, Miner. Eng., 156(2020), art. No. 106474. doi: 10.1016/j.mineng.2020.106474
    [4]
    R.H.E.M. Koppelaar and H.P. Weikard, Assessing phosphate rock depletion and phosphorus recycling options, Global Environ. Change, 23(2013), No. 6, p. 1454. doi: 10.1016/j.gloenvcha.2013.09.002
    [5]
    M.C. Fuerstenau, G. Jameson, and R.H. Yoon, Froth Flotation: A Century of Innovation, Society for Mining, Metallurgy, and Exploration. Inc., Littleton, 2007.
    [6]
    A. Amirech, M. Bouhenguel, and S. Kouachi, Two-stage reverse flotation process for removal of carbonates and silicates from phosphate ore using anionic and cationic collectors, Arab. J. Geosci., 11(2018), No. 19, p. 593. doi: 10.1007/s12517-018-3951-2
    [7]
    X. Zheng and R.W. Smith, Dolomite depressants in the flotation of apatite and collophane from dolomite, Miner. Eng., 10(1997), No. 5, p. 537. doi: 10.1016/S0892-6875(97)00031-9
    [8]
    F. Zhou, L.X. Wang, Z.H. Xu, Q.X. Liu, and R. Chi, Reactive oily bubble technology for flotation of apatite, dolomite and quartz, Int. J. Miner. Process., 134(2015), p. 74. doi: 10.1016/j.minpro.2014.11.009
    [9]
    Y.Y. Ruan, D.S. He, and R. Chi, Review on beneficiation techniques and reagents used for phosphate ores, Minerals, 9(2019), No. 4, art. No. 253. doi: 10.3390/min9040253
    [10]
    W.Z. Yin and Y. Tang, Interactive effect of minerals on complex ore flotation: A brief review, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 571. doi: 10.1007/s12613-020-1999-y
    [11]
    C. Li, C.Y. Sun, Y.L. Wang, Y.F. Fu, P.Y. Xu, and W.Z. Yin, Research on new beneficiation process of low-grade magnesite using vertical roller mill, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 432. doi: 10.1007/s12613-019-1898-2
    [12]
    Y.Y. Ruan, Z.Q. Zhang, H.H. Luo, C.Q. Xiao, F. Zhou, and R. Chi, Ambient temperature flotation of sedimentary phosphate ore using cottonseed oil as a collector, Minerals, 7(2017), No. 5, art. No. 65. doi: 10.3390/min7050065
    [13]
    A.Z.M. Abouzeid, A.T. Negm, and D.A. Elgillani, Upgrading of calcareous phosphate ores by flotation: Effect of ore characteristics, Int. J. Miner. Process., 90(2009), No. 1-4, p. 81. doi: 10.1016/j.minpro.2008.10.005
    [14]
    Y.J. Li, Research and practice in phosphate beneficiation in Yunnan Province, J. Wuhan Inst. Technol., 33(2011), No. 2, p. 12.
    [15]
    A.Z.M. Abouzeid, Physical and thermal treatment of phosphate ores—An overview, Int. J. Miner. Process., 85(2008), No. 4, p. 59. doi: 10.1016/j.minpro.2007.09.001
    [16]
    H.S. Hanna, The role of cationic surfactants in the selective flotation of phosphate ore constituents, Powder Technol., 12(1975), No. 1, p. 57. doi: 10.1016/0032-5910(75)85008-X
    [17]
    A.F. Rosa and J. Rubio, On the role of nanobubbles in particle-bubble adhesion for the flotation of quartz and apatitic minerals, Miner. Eng., 127(2018), p. 178. doi: 10.1016/j.mineng.2018.08.020
    [18]
    A.T. Salah, Y. Roe-Hoan, and S. Dongcheol, A comparison of anionic and cationic flotation of a siliceous phosphate rock in a column flotation cell, Min. Sci. Technol. China, 21(2011), No. 1, p. 147. doi: 10.1016/j.mstc.2010.12.017
    [19]
    Y. Han, S. Han, B. Kim, J. Yang, J. Choi, K. Kim, K.S. You, and H. Kim, Flotation separation of quartz from apatite and surface forces in bubble-particle interactions: Role of pH and cationic amine collector contents, J. Ind. Eng. Chem., 70(2019), p. 107. doi: 10.1016/j.jiec.2018.09.036
    [20]
    X.B. Li, Q. Zhang, B. Hou, J.J. Ye, S. Mao, and X.H. Li, Flotation separation of quartz from collophane using an amine collector and its adsorption mechanisms, Powder Technol., 318(2017), p. 224. doi: 10.1016/j.powtec.2017.06.003
    [21]
    Z.Q. Huang, C. Cheng, K. Li, S.Y. Zhang, J.R. Zhou, W.H. Luo, Z.W. Liu, W.W. Qin, H.L. Wang, Y.J. Hu, G.C. He, X.Y. Yu, T.S. Qiu, and W. Fu, Reverse flotation separation of quartz from phosphorite ore at low temperatures by using an emerging Gemini surfactant as the collector, Sep. Purif. Technol., 246(2020), art. No. 116923. doi: 10.1016/j.seppur.2020.116923
    [22]
    Z.Q. Huang, C. Cheng, Z.W. Liu, H.Q. Zeng, B. Feng, H. Zhong, W.H. Luo, Y.J. Hu, Z.Q. Guo, G.C. He, and W. Fu, Utilization of a new Gemini surfactant as the collector for the reverse froth flotation of phosphate ore in sustainable production of phosphate fertilizer, J. Cleaner Prod., 221(2019), p. 108. doi: 10.1016/j.jclepro.2019.02.251
    [23]
    Z. Cao, Y.D. Cao, Q.Q. Qu, J.S. Zhang, and Y.F. Mu, Separation of bastnäsite from fluorite using ethylenediamine tetraacetic acid as depressant, Miner. Eng., 134(2019), p. 134. doi: 10.1016/j.mineng.2019.01.030
    [24]
    O. Salmani Nuri, E. Allahkarami, M. Irannajad, and A. Abdollahzadeh, Estimation of selectivity index and separation efficiency of copper flotation process using ANN model, Geosystem Eng., 20(2017), No. 1, p. 41. doi: 10.1080/12269328.2016.1220334
    [25]
    J. Drelich, Guidelines to measurements of reproducible contact angles using a sessile-drop technique, Surf. Innov., 1(2013), No. 4, p. 248. doi: 10.1680/si.13.00010
    [26]
    B. Yang, W.Z. Yin, Z.L. Zhu, H.R. Sun, Q.Y. Sheng, Y.F. Fu, J. Yao, and K. Zhao, Differential adsorption of hydrolytic polymaleic anhydride as an eco-friendly depressant for the selective flotation of apatite from dolomite, Sep. Purif. Technol., 256(2021), art. No. 117803. doi: 10.1016/j.seppur.2020.117803
    [27]
    B. Yang, H.R. Sun, D.H. Wang, W.Z. Yin, S.H. Cao, Y.L. Wang, Z.L. Zhu, K. Jiang, and J. Yao, Selective adsorption of a new depressant Na2ATP on dolomite: Implications for effective separation of magnesite from dolomite via froth flotation, Sep. Purif. Technol., 250(2020), art. No. 117278. doi: 10.1016/j.seppur.2020.117278
    [28]
    Y.X. Yu, L.Q. Ma, M.L. Cao, and Q. Liu, Slime coatings in froth flotation: A review, Miner. Eng., 114(2017), p. 26. doi: 10.1016/j.mineng.2017.09.002
    [29]
    B. Yang, Z.L. Zhu, H.R. Sun, W.Z. Yin, J. Hong, S.H. Cao, Y. Tang, C. Zhao, and J. Yao, Improving flotation separation of apatite from dolomite using PAMS as a novel eco-friendly depressant, Miner. Eng., 156(2020), art. No. 106492. doi: 10.1016/j.mineng.2020.106492
    [30]
    Z.L. Zhu, D.H. Wang, B. Yang, W.Z. Yin, M.S. Ardakani, J. Yao, and J.W. Drelich, Effect of nano-sized roughness on the flotation of magnesite particles and particle-bubble interactions, Miner. Eng., 151(2020), art. No. 106340. doi: 10.1016/j.mineng.2020.106340
    [31]
    H.R. Sun, B. Yang, Z.L. Zhu, W.Z. Yin, Q.Y. Sheng, Y. Hou, and J. Yao, New insights into selective-depression mechanism of novel depressant EDTMPS on magnesite and quartz surfaces: Adsorption mechanism, DFT calculations, and adsorption model, Miner. Eng., 160(2021), art. No. 106660. doi: 10.1016/j.mineng.2020.106660
    [32]
    J.W. Drelich, Contact angles: From past mistakes to new developments through liquid–solid adhesion measurements, Adv. Colloid Interface Sci., 267(2019), p. 1. doi: 10.1016/j.cis.2019.02.002
    [33]
    J.W. Drelich, L. Boinovich, E. Chibowski, C. Della Volpe, L. Hołysz, A. Marmur, and S. Siboni, Contact angles: History of over 200 years of open questions, Surf. Innov., 8(2020), No. 1-2, p. 3. doi: 10.1680/jsuin.19.00007
    [34]
    Y.F. Fu, W.Z. Yin, B. Yang, C. Li, Z.L. Zhu, and D. Li, Effect of sodium alginate on reverse flotation of hematite and its mechanism, Int. J. Miner. Metall. Mater., 25(2018), No. 10, p. 1113. doi: 10.1007/s12613-018-1662-z
    [35]
    Y.F. Fu, W.Z. Yin, X.S. Dong, C.Y. Sun, B. Yang, J. Yao, H.L. Li, C. Li, and H. Kim, New insights into the flotation responses of brucite and serpentine for different conditioning times: Surface dissolution behavior, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1898. doi: 10.1007/s12613-020-2158-1
    [36]
    Z.L. Zhu, W.Z. Yin, D.H. Wang, H.R. Sun, K.Q. Chen, and B. Yang, The role of surface roughness in the wettability and floatability of quartz particles, Appl. Surf. Sci., 527(2020), art. No. 146799. doi: 10.1016/j.apsusc.2020.146799
    [37]
    G.B. Abaka-Wood, J. Addai-Mensah, and W. Skinner, A study of flotation characteristics of monazite, hematite, and quartz using anionic collectors, Int. J. Miner. Process., 158(2017), p. 55. doi: 10.1016/j.minpro.2016.11.012
    [38]
    G.B. Abaka-Wood, J. Addai-Mensah, and W. Skinner, Selective flotation of rare earth oxides from hematite and quartz mixtures using oleic acid as a collector, Int. J. Miner. Process., 169(2017), p. 60. doi: 10.1016/j.minpro.2017.10.002
    [39]
    J. Xie, Q. Zhang, S. Mao, X.H. Li, Z.H. Shen, and L.J. Li, Anisotropic crystal plane nature and wettability of fluorapatite, Appl. Surf. Sci., 493(2019), p. 294. doi: 10.1016/j.apsusc.2019.06.195
    [40]
    M.Y. Li, J. Liu, Y.M. Hu, X.P. Gao, Q.D. Yuan, and F.G. Zhao, Investigation of the specularite/chlorite separation using chitosan as a novel depressant by direct flotation, Carbohydr. Polym., 240(2020), art. No. 116334. doi: 10.1016/j.carbpol.2020.116334
    [41]
    W.J. Zhang, Z.T. Feng, H. Mulenga, W. Sun, J. Cao, and Z.Y. Gao, Synthesis of a novel collector based on selective nitrogen coordination for improved separation of galena and sphalerite against pyrite, Chem. Eng. Sci., 226(2020), art. No. 115860. doi: 10.1016/j.ces.2020.115860
    [42]
    C. Liu, W.C. Zhang, S.X. Song, and H.Q. Li, A novel method to improve carboxymethyl cellulose performance in the flotation of talc, Miner. Eng., 131(2019), p. 23. doi: 10.1016/j.mineng.2018.11.003
    [43]
    B. Yang, W.Z. Yin, J. Yao, Q.Y. Sheng, and Z.L. Zhu, Role of decaethoxylated stearylamine in the selective flotation of hornblende and siderite: An experimental and molecular dynamics simulation study, Appl. Surf. Sci., 571(2022), art. No. 151177. doi: 10.1016/j.apsusc.2021.151177
    [44]
    Y.P. Niu, C.Y. Sun, W.Z. Yin, X.R. Zhang, H.F. Xu, and X. Zhang, Selective flotation separation of andalusite and quartz and its mechanism, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1059. doi: 10.1007/s12613-019-1842-5
    [45]
    B.B. Luo, Y.M. Zhu, C.Y. Sun, Y.J. Li, and Y.X. Han, The flotation behavior and adsorption mechanisms of 2-((2-(decyloxy)ethyl)amino)lauric acid on quartz surface, Miner. Eng., 117(2018), p. 121. doi: 10.1016/j.mineng.2017.12.016
    [46]
    X.R. Zhang, Y.G. Zhu, Y. Xie, Y.B. Shang, and G.B. Zheng, A novel macromolecular depressant for reverse flotation: Synthesis and depressing mechanism in the separation of hematite and quartz, Sep. Purif. Technol., 186(2017), p. 175. doi: 10.1016/j.seppur.2017.05.051
    [47]
    X.M. Jiang, Q.J. Guo, H.Y. Li, J. Jiang, Y. Chen, and T. Xie, Photofoams and flotation mechanism of an azobenzene-based surfactant on quartz, Colloids Surf. A., 535(2017), p. 201. doi: 10.1016/j.colsurfa.2017.09.047
    [48]
    N. Nan, Y.M. Zhu, and Y.X. Han, Flotation performance and mechanism of α-Bromolauric acid on separation of hematite and fluorapatite, Miner. Eng., 132(2019), p. 162. doi: 10.1016/j.mineng.2018.11.048
    [49]
    Q.B. Cao, H. Zou, X.M. Chen, and S.M. Wen, Flotation selectivity of N-hexadecanoylglycine in the fluorapatite-dolomite system, Miner. Eng., 131(2019), p. 353. doi: 10.1016/j.mineng.2018.11.033
    [50]
    Z.Q. Huang, H. Zhong, S. Wang, L.Y. Xia, W.B. Zou, and G.Y. Liu, Investigations on reverse cationic flotation of iron ore by using a Gemini surfactant: Ethane-1,2-bis(dimethyl-dodecyl-ammonium bromide), Chem. Eng. J., 257(2014), p. 218. doi: 10.1016/j.cej.2014.07.057
    [51]
    W. Lv, B. Bazin, D.S. Ma, Q.J. Liu, D. Han, and K.Y. Wu, Static and dynamic adsorption of anionic and amphoteric surfactants with and without the presence of alkali, J. Pet. Sci. Eng., 77(2011), No. 2, p. 209. doi: 10.1016/j.petrol.2011.03.006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(827) PDF Downloads(49) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return