Lei Zhou, Yan-fang Zhang, Pan Yi, Ying Wen, Chao-fang Dong, Li-min Meng, and Se-fei Yang, Effects of BN content on the mechanical properties of nanocrystalline 3Y-TZP/Al2O3/BN dental ceramics, Int. J. Miner. Metall. Mater., 28(2021), No. 11, pp. 1854-1860. https://doi.org/10.1007/s12613-021-2324-0
Cite this article as:
Lei Zhou, Yan-fang Zhang, Pan Yi, Ying Wen, Chao-fang Dong, Li-min Meng, and Se-fei Yang, Effects of BN content on the mechanical properties of nanocrystalline 3Y-TZP/Al2O3/BN dental ceramics, Int. J. Miner. Metall. Mater., 28(2021), No. 11, pp. 1854-1860. https://doi.org/10.1007/s12613-021-2324-0
Research Article

Effects of BN content on the mechanical properties of nanocrystalline 3Y-TZP/Al2O3/BN dental ceramics

+ Author Affiliations
  • Corresponding author:

    Se-fei Yang    E-mail: yangyangfeifei@aliyun.com

  • Received: 6 May 2021Revised: 16 June 2021Accepted: 29 June 2021Available online: 30 June 2021
  • 3Y-TZP/3wt% Al2O3 powder was coated with varying amounts of BN using the urea and borate reaction sintering method, and then multiphase ceramics were prepared by hot pressing sintering. The micro-topography and the compositional analysis of synthesized ceramics were conducted through scanning electron microscopy, transmission electron microscopy and X-ray diffraction. A mechanical tester was used to analyze the Vickers hardness, fracture toughness, and bending strength of the synthesized ceramics. The results showed that the ceramic with a BN content of 12wt% showed the best processability, but had diminished mechanical properties (such as fracture toughness and bending strength). The ceramic with a BN content of 9wt% showed better processability than those with 3wt% and 6wt% BN. However, the fracture toughness was affected by the addition of 9wt% BN, making this ceramic only usable as a base material for a three-unit fixed bridge. In contrast, the ceramics with a BN content of 3wt% or 6wt% fulfilled the criteria for use in multi-unit restoration, but their low processability made them unsuitable for milling after sintering.

  • loading
  • [1]
    T.R. Ramesh, G. Makam, P.V. Harish, U. Krishnakumar, and B. Nandakishore, Zirconia ceramics as a dental biomaterial - An over view, Trends Biomater. Artif. Organs, 26(2012), No. 3, p. 154.
    [2]
    B.K. Yıldız, H. Yılmaz, and Y.K. Tür, Influence of nickel addition on the microstructure and mechanical properties of Al2O3−5vol% ZrO2 ceramic composites prepared via precipitation method, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 908. doi: 10.1007/s12613-019-1792-y
    [3]
    I. Caglar, S.M. Ates, and Z. Yesil Duymus, The effect of various polishing systems on surface roughness and phase transformation of monolithic zirconia, J. Adv. Prosthodont., 10(2018), No. 2, p. 132. doi: 10.4047/jap.2018.10.2.132
    [4]
    D.F. Zambrano, A. Barrios, L.E. Tobón, C. Serna, P. Gómez, J.D. Osorio, and A. Toro, Thermal properties and phase stability of yttria-stabilized zirconia (YSZ) coating deposited by air plasma spray onto a Ni-base superalloy, Ceram. Int., 44(2018), No. 4, p. 3625. doi: 10.1016/j.ceramint.2017.11.109
    [5]
    E. Camposilvan, R. Leone, L. Gremillard, R. Sorrentino, F. Zarone, M. Ferrari, and J. Chevalier, Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications, Dent. Mater., 34(2018), No. 6, p. 879. doi: 10.1016/j.dental.2018.03.006
    [6]
    W.Y. Li and J. Sun, Effects of ceramic density and sintering temperature on the mechanical properties of a novel polymer-infiltrated ceramic-network zirconia dental restorative (filling) material, Med. Sci. Monit., 24(2018), p. 3068. doi: 10.12659/MSM.907097
    [7]
    R.C. Ramola, M. Rawat, K. Joshi, A. Das, S.K. Gautam, and F. Singh, Study of phase transformation induced by electronic excitation in pure and yttrium doped ZrO2 thin films, Mater. Res. Express, 4(2017), No. 9, art No. 096401.
    [8]
    C.C. Gonzaga, C.Y. Okada, P.F. Cesar, W.G. Miranda Jr, and H.N. Yoshimura Jr, Effect of processing induced particle alignment on the fracture toughness and fracture behavior of multiphase dental ceramics, Dent. Mater., 25(2009), No. 11, p. 1293. doi: 10.1016/j.dental.2009.03.013
    [9]
    S.J. Wang, D.C. Jia, Z.H. Yang, X.M. Duan, Z. Tian, and Y. Zhou, Effect of BN content on microstructures, mechanical and dielectric properties of porous BN/Si3N4 composite ceramics prepared by gel casting, Ceram. Int., 39(2013), No. 4, p. 4231. doi: 10.1016/j.ceramint.2012.11.005
    [10]
    Z.Q. Shi, J.P. Wang, G.J. Qiao, and Z.H. Jin, Effects of weak boundary phases (WBP) on the microstructure and mechanical properties of pressureless sintered Al2O3/h-BN machinable composites, Mater. Sci. Eng. A, 492(2008), No. 1-2, p. 29. doi: 10.1016/j.msea.2008.03.004
    [11]
    J.S. Wu, L. Zhou, H.L. Xing, Z. Wang, C.F. Dong, and S.F. Yang, Preparation processes of 3% yttria-stabilized tetragonal zirconia polycrystalline ceramic composite powders coated with nano-sized Al2O3-boron nitride, West Chin. J. Stomatol., 35(2017), No. 5, p. 461.
    [12]
    S. Gali, K. Ravikumar, B.V.S. Murthy, and B. Basu, Zirconia toughened mica glass ceramics for dental restorations, Dent. Mater., 34(2018), No. 3, p. e36. doi: 10.1016/j.dental.2018.01.009
    [13]
    ISO International, ISO Standard 6872: Dentistry-Ceramic Materials, Switzerland, 2015.
    [14]
    B. Zhong, G.L. Zhao, X.X. Huang, L. Xia, X.H. Tang, S.C. Zhang, and G.W. Wen, Microstructure and mechanical properties of ZTA/BN machinable ceramics fabricated by reactive hot pressing, J. Eur. Ceram. Soc., 35(2015), No. 2, p. 641. doi: 10.1016/j.jeurceramsoc.2014.09.002
    [15]
    A.J. Phillipps, W.J. Clegg, and T.W. Clyne, Fracture behaviour of ceramic laminates in bending—I. Modelling of crack propagation, Acta Metall. Mater., 41(1993), No. 3, p. 805. doi: 10.1016/0956-7151(93)90014-J
    [16]
    S. Sakoda, N. Nakao, and I. Watanabe, The effect of abrading and cutting instruments on machinability of dental ceramics, J. Mater. Sci. Mater. Med., 29(2018), No. 3, p. 34. doi: 10.1007/s10856-018-6031-y
    [17]
    L.F. Guilardi, G.K.R. Pereira, A. Gündel, M.P. Rippe, and L.F. Valandro, Surface micro-morphology, phase transformation, and mechanical reliability of ground and aged monolithic zirconia ceramic, J. Mech. Behav. Biomed. Mater., 65(2017), p. 849. doi: 10.1016/j.jmbbm.2016.10.008
    [18]
    Z.Y. Chen, L.J. Wang, X.J. Du, Z.H. Sun, F.S. Li, and K.C. Chou, Carbon deposition in porous nickel/yttria-stabilized zirconia anode under methane atmosphere, Int. J. Miner. Metall. Mater., 26(2019), No. 3, p. 350. doi: 10.1007/s12613-019-1744-6
    [19]
    A. Falin, Q.R. Cai, E.J.G. Santos, D. Scullion, D. Qian, R. Zhang, Z. Yang, S.M. Huang, K. Watanabe, T. Taniguchi, M.R. Barnett, Y. Chen, R.S. Ruoff, and L.H. Li, Mechanical properties of atomically thin boron nitride and the role of interlayer interactions, Nat. Commun., 8(2017), p. 15815. doi: 10.1038/ncomms15815
    [20]
    S.F. Yang, L.Q. Yang, Z.H. Jin, T.W. Guo, L. Wang, and H.C. Liu, New nano-sized Al2O3−BN coating 3Y-TZP ceramic composites for CAD/CAM-produced all-ceramic dental restorations. Part I. Fabrication of powders, Nanomed. Nanotechnol. Biol. Med., 5(2009), No. 2, p. 232. doi: 10.1016/j.nano.2008.10.004
    [21]
    M.S. Zafar, Wear behavior of various dental restorative materials, Mater. Technol., 34(2019), No. 1, p. 25. doi: 10.1080/10667857.2018.1462978
    [22]
    A. Rupawala, S.I. Musani, P. Madanshetty, R. Dugal, U.D. Shah, and E.J. Sheth, A study on the wear of enamel caused by monolithic zirconia and the subsequent phase transformation compared to two other ceramic systems, J. Indian Prosthodont. Soc., 17(2017), No. 1, p. 8.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(562) PDF Downloads(53) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return