Mingfan Qi, Liangyu Wei, Yuzhao Xu, Jin Wang, Aisen Liu, Bing Hao,  and Jicheng Wang, Effect of trace yttrium on the microstructure, mechanical property and corrosion behavior of homogenized Mg–2Zn–0.1Mn–0.3Ca–xY biological magnesium alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp. 1746-1754. https://doi.org/10.1007/s12613-021-2327-x
Cite this article as:
Mingfan Qi, Liangyu Wei, Yuzhao Xu, Jin Wang, Aisen Liu, Bing Hao,  and Jicheng Wang, Effect of trace yttrium on the microstructure, mechanical property and corrosion behavior of homogenized Mg–2Zn–0.1Mn–0.3Ca–xY biological magnesium alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp. 1746-1754. https://doi.org/10.1007/s12613-021-2327-x
Research Article

Effect of trace yttrium on the microstructure, mechanical property and corrosion behavior of homogenized Mg–2Zn–0.1Mn–0.3Ca–xY biological magnesium alloy

+ Author Affiliations
  • Corresponding author:

    Mingfan Qi    E-mail: qimfan@sina.cn

  • Received: 18 March 2021Revised: 24 June 2021Accepted: 5 July 2021Available online: 7 July 2021
  • The effects of trace yttrium (Y) element on the microstructure, mechanical properties, and corrosion resistance of Mg–2Zn–0.1Mn–0.3Ca–xY (x = 0, 0.1, 0.2, 0.3) biological magnesium alloys are investigated. Results show that grain size decreases from 310 to 144 μm when Y content increases from 0wt% to 0.3wt%. At the same time, volume fraction of the second phase increases from 0.4% to 6.0%, yield strength of the alloy continues to increase, and ultimate tensile strength and elongation decrease initially and then increase. When the Y content increases to 0.3wt%, Mg3Zn6Y phase begins to precipitate in the alloy; thus, the alloy exhibits the most excellent mechanical property. At this time, its ultimate tensile strength, yield strength, and elongation are 119 MPa, 69 MPa, and 9.1%, respectively. In addition, when the Y content is 0.3wt%, the alloy shows the best corrosion resistance in the simulated body fluid (SBF). This investigation has revealed that the improvement of mechanical properties and corrosion resistance is mainly attributed to the grain refinement and the precipitated Mg3Zn6Y phase.
  • loading
  • [1]
    J.L. Su, J. Teng, Z.L. Xu, and Y. Li, Biodegradable magnesium-matrix composites: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 724. doi: 10.1007/s12613-020-1987-2
    [2]
    M. Razzaghi, M. Kasiri-Asgarani, H.R. Bakhsheshi-Rad, and H. Ghayour, In vitro bioactivity and corrosion of PLGA/hardystonite composite-coated magnesium-based nanocomposite for implant applications, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 168. doi: 10.1007/s12613-020-2072-6
    [3]
    Z. Zhang, J.H. Zhang, J. Wang, Z.H. Li, J.S. Xie, S.J. Liu, K. Guan, and R.Z. Wu, Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30. doi: 10.1007/s12613-020-2190-1
    [4]
    M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials, 27(2006), No. 9, p. 1728. doi: 10.1016/j.biomaterials.2005.10.003
    [5]
    M.W. Yu, J.Y. Li, J.X. Li, J. Wang, H.Y. Lai, and Y. Zhang, Effects of trace Sr on microstructure, mechanical properties and corrosion resistance of Mg–0.2Zn–0.1Mn–xSr biomaterials, Rare Met. Mater. Eng., 48(2019), No. 12, p. 4016.
    [6]
    Y.Z. Xu, J.Y. Li, M.F. Qi, L.H. Liao, and Z.J. Gao, Enhanced mechanical properties of Mg–Zn–Y–Zr alloy by low-speed indirect extrusion, J. Mater. Res. Technol., 9(2020), No. 5, p. 9856. doi: 10.1016/j.jmrt.2020.06.029
    [7]
    R.Q. Zhang, J.F. Wang, S. Huang, S.J. Liu, and F.S. Pan, Substitution of Ni for Zn on microstructure and mechanical properties of Mg–Gd–Y–Zn–Mn alloy, J. Magnes. Alloys, 5(2017), No. 3, p. 355. doi: 10.1016/j.jma.2017.07.002
    [8]
    W.W. He, E.L. Zhang, and K. Yang, Effect of Y on the bio-corrosion behavior of extruded Mg–Zn–Mn alloy in Hank’s solution, Mater. Sci. Eng. C, 30(2010), No. 1, p. 167. doi: 10.1016/j.msec.2009.09.014
    [9]
    Z.R. Xie, C. Zhang, H.C. Pan, Y.X. Wang, Y.P. Ren, and G.W. Qin, Microstructures and bio-corrosion resistances of as-extruded Mg–Ca alloys with ultra-fine grain size, Rare Met., 2017, DOI: 10.1007/s12598-017-0945-2.
    [10]
    L. Zhang, Z. Liu, and P.L. Mao, Effect of annealing on the microstructure and mechanical properties of Mg−2.5Zn−0.5Y alloy, Int. J. Miner. Metall. Mater., 21(2014), No. 8, p. 779. doi: 10.1007/s12613-014-0971-0
    [11]
    E. Aghion, G. Levy, and S. Ovadia, In vivo behavior of biodegradable Mg–Nd–Y–Zr–Ca alloy, J. Mater. Sci. -Mater. Med., 23(2012), No. 3, p. 805.
    [12]
    Y.Z. Xu, J.Y. Li, M.F. Qi, J.B. Gu, and Y. Zhang, Effect of extrusion on the microstructure and corrosion behaviors of biodegradable Mg–Zn–Y–Gd–Zr alloy, J. Mater. Sci., 55(2020), No. 3, p. 1231. doi: 10.1007/s10853-019-03978-8
    [13]
    S.Q. Yin, W.C. Duan, W.H. Liu, L. Wu, J.M. Yu, Z.L. Zhao, M. Liu, P. Wang, J.Z. Cui, and Z.Q. Zhang, Influence of specific second phases on corrosion behaviors of Mg−Zn−Gd−Zr alloys, Corros. Sci., 166(2020), art. No. 108419. doi: 10.1016/j.corsci.2019.108419
    [14]
    C. Zhang, L. Wu, H. Liu, G.S. Huang, B. Jiang, A. Atrens, and F.S. Pan, Microstructure and corrosion behavior of Mg–Sc binary alloys in 3.5wt% NaCl solution, Corros. Sci., 174(2020), art. No. 108831. doi: 10.1016/j.corsci.2020.108831
    [15]
    T. Kokubo and H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(2006), No. 15, p. 2907. doi: 10.1016/j.biomaterials.2006.01.017
    [16]
    D.F. Zhang, X.X. Xu, F.G. Qi, X.X. Guo, and Z.T. Zhu, Research status of yttrium-containing Mg-Zn based magnesium alloys, Foundary, 61(2012), No. 3, p. 266.
    [17]
    J.X. Li, Y. Zhang, J.Y. Li, and J.X. Xie, Effect of trace HA on microstructure, mechanical properties and corrosion behavior of Mg−2Zn−0.5Sr alloy, J. Mater. Sci. Technol., 34(2018), No. 2, p. 299. doi: 10.1016/j.jmst.2017.06.013
    [18]
    Y. Zhang, J.X. Li, and J.Y. Li, Microstructure, mechanical properties, corrosion behavior and film formation mechanism of Mg−Zn−Mn−xNd in Kokubo’s solution, J. Alloys Compd., 730(2018), p. 458. doi: 10.1016/j.jallcom.2017.09.325
    [19]
    H.S. Jiang, Microstructure and Mechanical Properties of High Strength MgZn(Y/Gd)Zr(Ca) Alloys Containing W Phase [Dissertation], Harbin Institute of Technology, Harbin, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(2339) PDF Downloads(34) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return