Cite this article as: |
Behrooz Shayegh Boroujeny, Payam Raiesi Goojani, and Ehsan Akbari, Effects of strain-induced melt activation treatment on the microstructure and properties of Zn sacrificial anodes, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1693-1704. https://doi.org/10.1007/s12613-021-2328-9 |
Behrooz Shayegh Boroujeny E-mail: b.shayegh@eng.sku.ac.ir
The microstructural properties and electrochemical performance of zinc (Zn) sacrificial anodes during strain-induced melt activation (SIMA) were investigated in this study. The samples were subjected to a compressive ratio of 20%–50% at various temperatures (425–435°C) and durations (5–30 min). Short-term electrochemical tests (anode tests) based on DNV-RP-B401 and potentiodynamic polarization tests were performed in 3.5wt% NaCl solution to evaluate the electrochemical efficiency and corrosion behavior of the samples, respectively. The electrochemical test results for the optimum sample confirmed that the corrosion current density declined by 90% and the anode efficiency slightly decreased relative to that of the raw sample. Energy-dispersive X-ray spectroscopy, scanning electron microscopy, metallographic images, and microhardness profiles showed the accumulation of alloying elements on the boundary and the conversion of uniform corrosion into localized corrosion, hence the decrease of the Zn sacrificial anode’s efficiency after the SIMA process.
[1] |
F.C. Porter, Corrosion Resistance of Zinc and Zinc Alloys, 1st ed., CRC Press, Boca Raton, 1994.
|
[2] |
X.G. Zhang, Corrosion and Electrochemistry of Zinc, Springer, Boston, 1996.
|
[3] |
R.F. Crundwell, Sacrificial anodes – Old and new in cathodic protection theory and practice, [in] Second International Conference on Cathodic Protection, Stratford upon Avon, 1989, p. 143.
|
[4] |
E. Yılmaz, E. Çadırlı, E. Acer, and M. Gündüz, Microstructural evolution and mechanical properties in directionally solidified Sn–10.2Sb peritectic alloy at a constant temperature gradient, Mater. Res., 19(2016), No. 2, p. 370. doi: 10.1590/1980-5373-MR-2015-0104
|
[5] |
D. M. Rosa, J. E. Spinelli, W. R. Osório and A. Garcia, Effects of cell size and macrosegregation on the corrosion behavior of a dilute Pb–Sb alloy, J. Power Sources, 162(2006), No. 1, p. 696. doi: 10.1016/j.jpowsour.2006.07.016
|
[6] |
D.H. Kirkwood, M. Suéry, P. Kapranos, H.V. Atkinson, and K.P. Young, Semi-solid Processing of Alloys, Springer, Berlin Heidelberg, 2010.
|
[7] |
R. Koeune and J.P. Ponthot, An improved constitutive model for the numerical simulation of semi-solid thixoforming, J. Comput. Appl. Math., 234(2010), No. 7, p. 2287. doi: 10.1016/j.cam.2009.08.085
|
[8] |
R. Meshkabadi, G. Faraji, A. Javdani, A. Fata, and V. Pouyafar, Microstructure and homogeneity of semi-solid 7075 aluminum tubes processed by parallel tubular channel angular pressing, Met. Mater. Int., 23(2017), No. 5, p. 1019. doi: 10.1007/s12540-017-6760-3
|
[9] |
S.S. Wu, G. Zhong, P. An, L. Wan, and H. Nakae, Microstructural characteristics of Al–20Si–2Cu–0.4Mg–1Ni alloy formed by rheo-squeeze casting after ultrasonic vibration treatment, Trans. Nonferrous Met. Soc. China, 22(2012), No. 12, p. 2863. doi: 10.1016/S1003-6326(11)61543-4
|
[10] |
C. Vives, Elaboration of semisolid alloys by means of new electromagnetic rheocasting processes, Metall. Trans. B, 23(1992), No. 2, p. 189. doi: 10.1007/BF02651854
|
[11] |
F. Czerwinski, Strain induced melt activation (SIMA): Original concept, its impact and present understanding, Int. J. Cast Met. Res., 33(2020), No. 4-5, p. 157. doi: 10.1080/13640461.2020.1801561
|
[12] |
Z. Fan, X. Fang, and S. Ji, Microstructure and mechanical properties of rheo-diecast (RDC) aluminium alloys, Mater. Sci. Eng. A, 412(2005), No. 1-2, p. 298. doi: 10.1016/j.msea.2005.09.001
|
[13] |
B.M. Afshari, S.S. Mirjavadi, Y.A. Dolatabad, M. Aghajani, M.K.B. Givi, M. Alipour, and M. Emamy, Effects of pre-deformation on microstructure and tensile properties of Al–Zn–Mg–Cu alloy produced by modified strain induced melt activation, Trans. Nonferrous Met. Soc. China, 26(2016), No. 9, p. 2283. doi: 10.1016/S1003-6326(16)64349-2
|
[14] |
J.F. Jiang, Y. Wang, Z.M. Du, and S.J. Luo, Microstructure and properties of AZ80 alloy semisolid billets fabricated by new strain induced melt activated method, Trans. Nonferrous Met. Soc. China, 22(2012), Suppl. 2, p. s422.
|
[15] |
J.F. Jiang, Y. Wang, J. Liu, J.J. Qu, Z.M. Du, and S.J. Luo, Microstructure and mechanical properties of AZ61 magnesium alloy parts achieved by thixo-extruding semisolid billets prepared by new SIMA, Trans. Nonferrous Met. Soc. China, 23(2013), No. 3, p. 576. doi: 10.1016/S1003-6326(13)62502-9
|
[16] |
R.D. Doherty, H.I. Lee, and E.A. Feest, Microstructure of stir-cast metals, Mater. Sci. Eng., 65(1984), No. 1, p. 181. doi: 10.1016/0025-5416(84)90211-8
|
[17] |
A. Turkeli and N. Akbas, Formation of non-dendritic structure in 7075 wrought aluminum alloy by sima process and effect of heat treatment, [in] Proceedings of the 4th International Conference on Semi-Solid Proceeding of Allots and Composites, Sheffield, 1996, p. 71.
|
[18] |
B. Shayegh Boroujeny, M.R. Ghashghaei, and E. Akbari, Effects of SIMA (Strain Induced Melt Activation) on microstructure and electrochemical behavior of Al–Zn–In sacrificial anodes, J. Alloys Compd., 731(2018), p. 354. doi: 10.1016/j.jallcom.2017.09.316
|
[19] |
G.H. Yan, S.D. Zhao, S.Q. Ma, and H.T. Shou, Microstructural evolution of A356.2 alloy prepared by the SIMA process, Mater. Charact., 69(2012), p. 45. doi: 10.1016/j.matchar.2012.04.005
|
[20] |
Z. Ahmad, Principle of Corrosion Engineering and Corrosion Control, 1st ed., Butterworth-Heinemann, Oxford, 2006.
|
[21] |
F. Saberi, B.S. Boroujeny, A. Doostmohamdi, A.R. Baboukani, and M. Asadikiya, Electrophoretic deposition kinetics and properties of ZrO2 nano coatings, Mater. Chem. Phys., 213(2018), p. 444. doi: 10.1016/j.matchemphys.2018.04.050
|
[22] |
Det Norske Veritas (DNV), DNV-RP-B401: Cathodic Protection Design, DNV, Oslo, 2010.
|
[23] |
Y.B. Song, K.T. Park, and C.P. Hong, Recrystallization behavior of 7175 Al alloy during modified strain-induced melt-activated (SIMA) process, Mater. Trans., 47(2006), No. 4, p. 1250. doi: 10.2320/matertrans.47.1250
|
[24] |
A. Bolouri, M. Shahmiri, and E.N.H. Cheshmeh, Microstructural evolution during semisolid state strain induced melt activation process of aluminum 7075 alloy, Trans. Nonferrous Met. Soc. China, 20(2010), No. 9, p. 1663. doi: 10.1016/S1003-6326(09)60355-1
|
[25] |
L. Zhang, Y.B. Liu, Z.Y. Cao, Y.F. Zhang, and Q.Q. Zhang, Effects of isothermal process parameters on the microstructure of semisolid AZ91D alloy produced by SIMA, J. Mater. Process. Technol., 209(2009), No. 2, p. 792. doi: 10.1016/j.jmatprotec.2008.02.046
|
[26] |
M.R. Rokni, A. Zarei-Hanzaki, and H.R. Abedi, Microstructure evolution and mechanical properties of back extruded 7075 aluminum alloy at elevated temperatures, Mater. Sci. Eng. A, 532(2012), p. 593. doi: 10.1016/j.msea.2011.11.020
|
[27] |
A. Clarke, S. Imhoff, P. Gibbs, J. Cooley, C. Morris, F. Merrill, B. Hollander, F. Mariam, T. Ott, M. Barker, T. Tucker, W.K. Lee, K. Fezzaa, A. Deriy, B. Patterson, K. Clarke, J. Montalvo, R. Field, D. Thoma, J. Smith, and D. Teter, Proton radiography peers into metal solidification, Sci. Rep., 3(2013), art. No. 2020. doi: 10.1038/srep02020
|
[28] |
D.R. Salinas, S.G. Garcia, and J.B. Bessone, Influence of alloying elements and microstructure on aluminium sacrificial anode performance: Case of Al–Zn, J. Appl. Electrochem., 29(1999), No. 9, p. 1063. doi: 10.1023/A:1003684219989
|
[29] |
H.Q. Lin, J.G. Wang, H.Y. Wang, and Q.C. Jiang, Effect of predeformation on the globular grains in AZ91D alloy during strain induced melt activation (SIMA) process, J. Alloys Compd., 431(2007), No. 1-2, p. 141. doi: 10.1016/j.jallcom.2006.05.067
|
[30] |
H.V. Atkinson, K. Burke, and G. Vaneetveld, Recrystallisation in the semi-solid state in 7075 aluminium alloy, Mater. Sci. Eng. A, 490(2008), No. 1-2, p. 266. doi: 10.1016/j.msea.2008.01.057
|
[31] |
L. Shrier, Corrosion control, [in] Corrosion, 2nd ed., Vol. 2, Newnes-Butterworths, London, 1976, p. 10.
|
[32] |
J.I. Langford and D. Louër, Diffraction line profiles and Scherrer constants for materials with cylindrical crystallites, J. Appl. Crystallogr., 15(1982), No. 1, p. 20. doi: 10.1107/S0021889882011297
|
[33] |
V. Soleimanian and S.R. Aghdaee, The influence of annealing temperature on the slip plane activity and optical properties of nanostructured ZnO films, Appl. Surf. Sci., 258(2011), No. 4, p. 1495. doi: 10.1016/j.apsusc.2011.09.115
|
[34] |
H.M. Wang, C.Q. Xia, P. Lei, and Z.W. Wang, Influence of thermomechanical aging on microstructure and mechanical properties of 2519A aluminum alloy, J. Cent. South Univ., 18(2011), No. 5, p. 1349. doi: 10.1007/s11771-011-0844-x
|
[35] |
K.D. Ralston and N. Birbilis, Effect of grain size on corrosion: A review, Corrosion, 66(2010), No. 7, art. No. 075005. doi: 10.5006/1.3462912
|
[36] |
E.E. Stansbury and R.A. Buchanan, Fundamentals of Electrochemical Corrosion, ASM International, Materials Park, OH, 2000.
|
[37] |
P. Nichols, B. Holtsbaum, D. Mayfield, S. Nelson, K. Parker, D.A. Schramm, and S. Zurbuchen, CP3-Cathodic Protection Technologist Course Manual, NACE International, Houston, TX, 2008.
|
[38] |
C. Choudhary, K.L. Sahoo, and D. Mandal, The effect of modified strain-induced melt activation (modified SIMA) process on the microstructure and mechanical properties of Al–7Si alloy, [in] A. Tomsett, ed., Light Metals 2020, The Minerals, Metals & Materials Series, Springer, Cham, 2020, p. 277.
|
[39] |
N. Saklakoglu, I. Etem Saklakoglu, M. Tanoglu, O. Oztas, and O. Cubukcuoglu, Mechanical properties and microstructural evaluation of AA5013 aluminum alloy treated in the semi-solid state by SIMA process, J. Mater. Process. Technol., 148(2004), No. 1, p. 103. doi: 10.1016/j.jmatprotec.2004.01.051
|