Cite this article as: |
Yu Wang, Guohua Zhang, and Kuochih Chou, Preparation and oxidation characteristics of ZrC–ZrB2 composite powders with different proportions, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 521-528. https://doi.org/10.1007/s12613-021-2330-2 |
ZrC and ZrB2 are both typical ultra-high temperature ceramics, which can be used in the hyperthermal environment. In this study, a method for preparing ultrafine ZrC–ZrB2 composite powder was provided, by using the raw materials of nano ZrO2, carbon black, B4C, and metallic Ca. It is worth pointing out that ZrC–ZrB2 composite powder with any proportion of ZrC to ZrB2 could be synthesized by this method. Firstly, a mixture of ZrC and C was prepared by carbothermal reduction of ZrO2. By adjusting the addition amount of B4C, ZrC was boronized by B4C to generate ZrC–ZrB2 composite powder with different compositions. Using this method, five composite powders with different molar ratios of ZrC and ZrB2 (100ZrC, 75ZrC–25ZrB2, 50ZrC–50ZrB2, 25ZrC–75ZrB2, and 100ZrB2) were prepared. When the temperature of boronization and decarburization process was 1473 K, the particle size of product was only tens of nanometres. Finally, the oxidation characteristics of different composite powders were investigated through oxidation experiments. The oxidation resistance of ZrC–ZrB2 composite powder continued to increase as the content of ZrB2 increased.
[1] |
W.G. Fahrenholtz, E.J. Wuchina, W.E. Lee, and Y.C. Zhou, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications, John Wiley & Sons, Inc., Hoboken, 2014.
|
[2] |
C. Nachiappan, L. Rangaraj, C. Divakar, and V. Jayaram, Synthesis and densification of monolithic zirconium carbide by reactive hot pressing, J. Am. Ceram. Soc., 93(2010), No. 5, p. 1341. doi: 10.1111/j.1551-2916.2010.03608.x
|
[3] |
D.L.J. Engberg, L. Tengdelius, H. Högberg, M. Thuvander, and L. Hultman, Atom probe tomography field evaporation characteristics and compositional corrections of ZrB2, Mater. Charact., 156(2019), art. No. 109871. doi: 10.1016/j.matchar.2019.109871
|
[4] |
A.W. Weimer, Carbide, Nitride and Boride Materials Synthesis and Processing, Springer, Dordrecht, 1997.
|
[5] |
G. Effenberg and S. Ilyenko, Ternary Alloy Systems, Springer, Heidelberg, 2009.
|
[6] |
F. Adibpur, S.A. Tayebifard, M. Zakeri, and M.S. Asl, Spark plasma sintering of quadruplet ZrB2–SiC–ZrC–Cf composites, Ceram. Int., 46(2020), No. 1, p. 156. doi: 10.1016/j.ceramint.2019.08.243
|
[7] |
F.P. Li, Z.L. Xu, K. Zhao, and Y.F. Tang, ZrB2–ZrC composite nanofibers fabricated by electrospinning and carbothermal reduction: Processing, phase evolution and tensile property, J. Alloys Compd., 771(2019), p. 456. doi: 10.1016/j.jallcom.2018.08.304
|
[8] |
M.S. Asl, B. Nayebi, S. Parvizi, Z. Ahmadi, N. Parvin, M. Shokouhimehr, and M. Mohammadi, Toughening of ZrB2-based composites with in-situ synthesized ZrC from ZrO2 and graphite precursors, J. Sci: Adv. Mater. Devices, 6(2021), No. 1, p. 42. doi: 10.1016/j.jsamd.2020.09.014
|
[9] |
D.L. Hu, H. Gu, J. Zou, Q. Zheng, and G.J. Zhang, Core‒rim structure, bi-solubility and a hierarchical phase relationship in hot-pressed ZrB2–SiC–MC ceramics (M = Nb, Hf, Ta, W), J. Materiomics, 7(2021), No. 1, p. 69. doi: 10.1016/j.jmat.2020.07.005
|
[10] |
I. Akin and G. Goller, Mechanical and oxidation behavior of spark plasma sintered ZrB2–ZrC–SiC composites, J. Ceram. Soc. Jpn., 120(2012), No. 1400, p. 143. doi: 10.2109/jcersj2.120.143
|
[11] |
A. Rezapour and Z. Balak, Fracture toughness and hardness investigation in ZrB2–SiC–ZrC composite, Mater. Chem. Phys., 241(2020), art. No. 122284. doi: 10.1016/j.matchemphys.2019.122284
|
[12] |
Z.L. Xu, K. Zhao, F.P. Li, Y.S. Huo, and Y.F. Tang, The oxidation behavior of ZrB2–ZrC composite nanofibers fabricated by electrospinning and carbothermal reduction, Ceram. Int., 46(2020), No. 8, p. 10409. doi: 10.1016/j.ceramint.2020.01.039
|
[13] |
Y. Kubota, M. Yano, R. Inoue, Y. Kogo, and K. Goto, Oxidation behavior of ZrB2–SiC–ZrC in oxygen-hydrogen torch environment, J. Eur. Ceram. Soc., 38(2018), No. 4, p. 1095. doi: 10.1016/j.jeurceramsoc.2017.11.024
|
[14] |
L. Liu, H.J. Li, W. Feng, X.H. Shi, K.Z. Li, and L.J. Guo, Ablation in different heat fluxes of C/C composites modified by ZrB2–ZrC and ZrB2–ZrC–SiC particles, Corros. Sci., 74(2013), p. 159. doi: 10.1016/j.corsci.2013.04.038
|
[15] |
L. Xu, C.Z. Huang, H.L. Liu, B. Zou, H.T. Zhu, G.L. Zhao, and J. Wang, In situ synthesis of ZrB2–ZrCx ceramic tool materials toughened by elongated ZrB2 grains, Mater. Des., 49(2013), p. 226. doi: 10.1016/j.matdes.2013.01.062
|
[16] |
Y. Wang, G.H. Zhang, Y.D. Wu, and X.B. He, Preparation of CaB6 powder via calciothermic reduction of boron carbide, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 37. doi: 10.1007/s12613-019-1873-y
|
[17] |
Y. Wang, Y.D. Wu, K.H. Wu, S.Q. Jiao, K.C. Chou, and G.H. Zhang, Effect of NaCl on synthesis of ZrB2 by a borothermal reduction reaction of ZrO2, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 831. doi: 10.1007/s12613-019-1794-9
|
[18] |
X. Lv, Z.J. Zhan, H.Y. Cao, and C.H. Guo, Microstructure and properties of the laser cladded in-situ ZrB2–ZrC/Cu composite coatings on copper substrate, Surf. Coat. Technol., 396(2020), art. No. 125937. doi: 10.1016/j.surfcoat.2020.125937
|
[19] |
T.G. Guan, M.Q. Cao, K. Xie, X. Lv, and Y.L. Tan, Microstructure and wear resistance of ZrC–ZrB2 /Ni composite coatings prepared by plasma transferred arc cladding, Mater. Res., 22(2019), No. 3, art. No. e20180781. doi: 10.1590/1980-5373-mr-2018-0781
|
[20] |
J.X. Hou, J. Fan, H.J. Yang, Z. Wang, and J.W. Qiao, Deformation behavior and plastic instability of boronized Al0.25CoCrFeNi high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1363. doi: 10.1007/s12613-020-1967-6
|
[21] |
J.Y. Xu, B.L. Zou, S.M. Zhao, Y. Hui, W.Z. Huang, X. Zhou, Y. Wang, X.L. Cai, and X.Q. Cao, Fabrication and properties of ZrC–ZrB2/Ni cermet coatings on a magnesium alloy by atmospheric plasma spraying of SHS powders, Ceram. Int., 40(2014), No. 10, p. 15537. doi: 10.1016/j.ceramint.2014.07.029
|
[22] |
N. Çömez, C. Çivi, and H. Durmuş, Reliability evaluation of hardness test methods of hardfacing coatings with hypoeutectic and hypereutectic microstructures, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1585. doi: 10.1007/s12613-019-1866-x
|
[23] |
J.D. Jarman, W.G. Fahrenholtz, G.E. Hilmas, J.L. Watts, and D.S. King, Characterization of fusion welded ceramics in the SiC–ZrB2–ZrC system, J. Eur. Ceram. Soc., 41(2021), No. 4, p. 2255. doi: 10.1016/j.jeurceramsoc.2020.10.067
|
[24] |
L.Y. Bai, F.L. Yuan, Z. Fang, Q. Wang, Y.G. Ouyang, H.C. Jin, J.P. He, W.F. Liu, and Y.L. Wang, RF thermal plasma synthesis of ultrafine ZrB2–ZrC composite powders, Nanomaterials, 10(2020), No. 12, art. No. 2497. doi: 10.3390/nano10122497
|
[25] |
S.G. Chen, Y.Z. Gou, H. Wang, K. Jian, and J. Wang, Preparation and characterization of high-temperature resistant ZrC–ZrB2 nanocomposite ceramics derived from single-source precursor, Mater. Des., 117(2017), p. 257. doi: 10.1016/j.matdes.2016.12.041
|
[26] |
T. Tsuchida and S. Yamamoto, Mechanical activation assisted self-propagating high-temperature synthesis of ZrC and ZrB2 in air from Zr/B/C powder mixtures, J. Eur. Ceram. Soc., 24(2004), No. 1, p. 45. doi: 10.1016/S0955-2219(03)00120-1
|
[27] |
Y. Wang, Y.D. Wu, B. Peng, K.H. Wu, and G.H. Zhang, A universal method for the synthesis of refractory metal diborides, Ceram. Int., 47(2021), No. 10, p. 14107. doi: 10.1016/j.ceramint.2021.01.281
|
[28] |
K.H. Wu, Y. Jiang, S.Q. Jiao, K.C. Chou, and G.H. Zhang, Synthesis of high purity nano-sized transition-metal carbides, J. Mater. Res. Technol., 9(2020), No. 5, p. 11778. doi: 10.1016/j.jmrt.2020.08.053
|
[29] |
W.M. Guo, G.J. Zhang, Y.M. Kan, and P.L. Wang, Oxidation of ZrB2 powder in the temperature range of 650–800°C, J. Alloys Compd., 471(2009), No. 1-2, p. 502. doi: 10.1016/j.jallcom.2008.04.006
|