Ping Zhu, Pingping Wang, Puzhen Shao, Xiu Lin, Ziyang Xiu, Qiang Zhang, Equo Kobayashi,  and Gaohui Wu, Research progress in interface modification and thermal conduction behavior of diamond/metal composites, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 200-211. https://doi.org/10.1007/s12613-021-2339-6
Cite this article as:
Ping Zhu, Pingping Wang, Puzhen Shao, Xiu Lin, Ziyang Xiu, Qiang Zhang, Equo Kobayashi,  and Gaohui Wu, Research progress in interface modification and thermal conduction behavior of diamond/metal composites, Int. J. Miner. Metall. Mater., 29(2022), No. 2, pp. 200-211. https://doi.org/10.1007/s12613-021-2339-6
Invited Review

Research progress in interface modification and thermal conduction behavior of diamond/metal composites

+ Author Affiliations
  • Diamond/metal composites are widely used in aerospace and electronic packaging fields due to their outstanding high thermal conductivity and low expansion. However, the difference in chemical properties leads to interface incompatibility between diamond and metal, which has a considerable impact on the performance of the composites. To improve the interface compatibility between diamond and metal, it is necessary to modify the interface of composites. This paper reviews the experimental research on interface modification and the application of computational simulation in diamond/metal composites. Combining computational simulation with experimental methods is a promising way to promote diamond/metal composite interface modification research.

  • loading
  • [1]
    S. Li, Q.Y. Zheng, Y.C. Lü, X.Y. Liu, X.Q. Wang, P.Y. Huang, D.G. Cahill, and B. Lü, High thermal conductivity in cubic boron arsenide crystals, Science, 361(2018), No. 6402, p. 579. doi: 10.1126/science.aat8982
    [2]
    C.L. Wei, X. Xu, B.Z. Wei, J.G. Cheng, and P.Q. Chen, Effect of diamond surface treatment on microstructure and thermal conductivity of diamond/W–30Cu composites prepared by microwave sintering, Diam. Relat. Mater., 104(2020), art. No. 107760. doi: 10.1016/j.diamond.2020.107760
    [3]
    P.D. Garman, J.M. Johnson, V. Talesara, H. Yang, D. Zhang, J. Castro, W. Lu, J. Hwang, and L.J. Lee, Silicon oxycarbide accelerated chemical vapor deposition of graphitic networks on ceramic substrates for thermal management enhancement, ACS Appl. Nano Mater., 2(2019), No. 1, p. 452. doi: 10.1021/acsanm.8b01998
    [4]
    Y. Mei, P.Z. Shao, M. Sun, G.Q. Chen, M. Hussain, F.L. Huang, Q. Zhang, X.S. Gao, Y.Y. Pei, S.J. Zhong, and G.H. Wu, Deformation treatment and microstructure of graphene-reinforced metal matrix nanocomposites: A review of graphene post-dispersion, Int. J. Miner. Metall. Mater., 27(2020), No. 7, p. 888. doi: 10.1007/s12613-020-2048-6
    [5]
    S. Shahsavar, M. Ketabchi, and S. Bagherzadeh, Fabrication of robust aluminum-carbon nanotube composites using ultrasonic assembly and rolling process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 160. doi: 10.1007/s12613-020-1969-4
    [6]
    C.J.H. Wort and R.S. Balmer, Diamond as an electronic material, Mater. Today, 11(2008), No. 1-2, p. 22. doi: 10.1016/S1369-7021(07)70349-8
    [7]
    K.A. Weidenmann, R. Tavangar, and L. Weber, Rigidity of diamond reinforced metals featuring high particle contents, Compos. Sci. Technol., 69(2009), No. 10, p. 1660. doi: 10.1016/j.compscitech.2009.03.016
    [8]
    G.Z. Bai, Y.J. Zhang, X.Y. Liu, J.J. Dai, X.T. Wang, and H.L. Zhang, High-temperature thermal conductivity and thermal cycling behavior of Cu–B/diamond composites, IEEE Trans. Compon. Packag. Manuf. Technol., 10(2020), No. 4, p. 626. doi: 10.1109/TCPMT.2019.2958056
    [9]
    Z.Q. Tan, D.B. Xiong, G.L. Fan, Z.Z. Chen, Q. Guo, C.P. Guo, G. Ji, Z.Q. Li, and D. Zhang, Enhanced thermal conductivity of diamond/aluminum composites through tuning diamond particle dispersion, J. Mater. Sci., 53(2018), No. 9, p. 6602. doi: 10.1007/s10853-018-2024-y
    [10]
    J.B. Liang, S. Yamajo, M. Kuball, and N. Shigekawa, Room-temperature direct bonding of diamond and Al, Scripta Mater., 159(2019), p. 58. doi: 10.1016/j.scriptamat.2018.09.016
    [11]
    Q.Y. Shi, Z.Q. Liu, D. Wu, H. Zhang, D.R. Ni, and K. Suganuma, Fabrication of Ni–P coating film on diamond/Al composite and its soldering reliability, J. Mater. Sci.: Mater. Electron., 29(2018), No. 10, p. 8371. doi: 10.1007/s10854-018-8848-z
    [12]
    G.Q. Chen, W.S. Yang, L. Xin, P.P. Wang, S.F. Liu, J. Qiao, F.J. Hu, Q. Zhang, and G.H. Wu, Mechanical properties of Al matrix composite reinforced with diamond particles with W coatings prepared by the magnetron sputtering method, J. Alloys Compd., 735(2018), p. 777. doi: 10.1016/j.jallcom.2017.11.183
    [13]
    X.Y. Liu, F.Y. Sun, L.H. Wang, Z.X. Wu, X.T. Wang, J.G. Wang, M.J. Kim, and H.L. Zhang, The role of Cr interlayer in determining interfacial thermal conductance between Cu and diamond, Appl. Surf. Sci., 515(2020), art. No. 146046. doi: 10.1016/j.apsusc.2020.146046
    [14]
    G. Chang, F.Y. Sun, L.H. Wang, Z.X. Che, X.T. Wang, J.G. Wang, M.J. Kim, and H.L. Zhang, Regulated interfacial thermal conductance between Cu and diamond by a TiC interlayer for thermal management applications, ACS Appl. Mater. Interfaces, 11(2019), No. 29, p. 26507. doi: 10.1021/acsami.9b08106
    [15]
    I.E. Monje, E. Louis, and J.M. Molina, Optimizing thermal conductivity in gas-pressure infiltrated aluminum/diamond composites by precise processing control, Compos. A: Appl. Sci. Manuf., 48(2013), p. 9. doi: 10.1016/j.compositesa.2012.12.010
    [16]
    Y.P. Wu, J.B. Luo, Y. Wang, G.L. Wang, H. Wang, Z.Q. Yang, and G.F. Ding, Critical effect and enhanced thermal conductivity of Cu–diamond composites reinforced with various diamond prepared by composite electroplating, Ceram. Int., 45(2019), No. 10, p. 13225. doi: 10.1016/j.ceramint.2019.04.008
    [17]
    C. Edtmaier, J. Segl, R. Koos, M. Schöbel, and C. Feldbaumer, Characterization of interfacial bonding strength at Al(Si)/diamond interfaces by neutron diffraction: Effect of diamond surface termination and processing conditions, Diam. Relat. Mater., 106(2020), art. No. 107842. doi: 10.1016/j.diamond.2020.107842
    [18]
    Z. Liang and H.L. Tsai, Effect of thin film confined between two dissimilar solids on interfacial thermal resistance, J. Phys. Condens. Matter, 23(2011), No. 49, p. 495303. doi: 10.1088/0953-8984/23/49/495303
    [19]
    A. Majumdar and P. Reddy, Role of electron-phonon coupling in thermal conductance of metal–nonmetal interfaces, Appl. Phys. Lett., 84(2004), No. 23, p. 4768. doi: 10.1063/1.1758301
    [20]
    Z.Q. Tan, Z.Q. Li, D.B. Xiong, G.L. Fan, G. Ji, and D. Zhang, A predictive model for interfacial thermal conductance in surface metallized diamond aluminum matrix composites, Mater. Des., 55(2014), p. 257. doi: 10.1016/j.matdes.2013.09.060
    [21]
    X.Y. Li, W. Park, Y. Wang, Y.P. Chen, and X.L. Ruan, Reducing interfacial thermal resistance between metal and dielectric materials by a metal interlayer, J. Appl. Phys., 125(2019), No. 4, art. No. 045302. doi: 10.1063/1.5079428
    [22]
    B.Y. Ju, W.S. Yang, Q. Zhang, M. Hussain, Z.Y. Xiu, J. Qiao, and G.H. Wu, Research progress on the characterization and repair of graphene defects, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1179. doi: 10.1007/s12613-020-2031-2
    [23]
    Y. Cui, S.B. Xu, L. Zhang, and S. Guo, Microstructure and thermal properties of diamond–Al composite fabricated by pressureless metal infiltration, Adv. Mater. Res., 150-151(2010), p. 1110. doi: 10.4028/www.scientific.net/AMR.150-151.1110
    [24]
    J.H. Wu, H.L. Zhang, Y. Zhang, J.W. Li, and X.T. Wang, Effect of copper content on the thermal conductivity and thermal expansion of Al–Cu/diamond composites, Mater. Des., 39(2012), p. 87. doi: 10.1016/j.matdes.2012.02.029
    [25]
    T. Schubert, B. Trindade, T. Weißgärber, and B. Kieback, Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications, Mater. Sci. Eng. A, 475(2008), No. 1-2, p. 39. doi: 10.1016/j.msea.2006.12.146
    [26]
    L. Weber and R. Tavangar, On the influence of active element content on the thermal conductivity and thermal expansion of Cu–X (X = Cr, B) diamond composites, Scripta Mater., 57(2007), No. 11, p. 988. doi: 10.1016/j.scriptamat.2007.08.007
    [27]
    L.H. Wang, J.W. Li, G.Z. Bai, N. Li, X.T. Wang, H.L. Zhang, J.G. Wang, and M.J. Kim, Interfacial structure evolution and thermal conductivity of Cu–Zr/diamond composites prepared by gas pressure infiltration, J. Alloys Compd., 781(2019), p. 800. doi: 10.1016/j.jallcom.2018.12.053
    [28]
    Z.Q. Tan, Z.Q. Li, G.L. Fan, Q. Guo, X.Z. Kai, G. Ji, L.T. Zhang, and D. Zhang, Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer, Mater. Des., 47(2013), p. 160. doi: 10.1016/j.matdes.2012.11.061
    [29]
    Z.F. Che, Q.X. Wang, L.H. Wang, J.W. Li, H.L. Zhang, Y. Zhang, X.T. Wang, J.G. Wang, and M.J. Kim, Interfacial structure evolution of Ti-coated diamond particle reinforced Al matrix composite produced by gas pressure infiltration, Compos. B: Eng., 113(2017), p. 285. doi: 10.1016/j.compositesb.2017.01.047
    [30]
    G. Ji, Z.Q. Tan, Y.G. Lu, D. Schryvers, Z.Q. Li, and D. Zhang, Heterogeneous interfacial chemical nature and bonds in a W-coated diamond/Al composite, Mater. Charact., 112(2016), p. 129. doi: 10.1016/j.matchar.2015.12.013
    [31]
    S.D. Ma, N.Q. Zhao, C.S. Shi, E.Z. Liu, C.N. He, F. He, and L.Y. Ma, Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites, Appl. Surf. Sci., 402(2017), p. 372. doi: 10.1016/j.apsusc.2017.01.078
    [32]
    Z.F. Che, J.W. Li, Q.X. Wang, L.H. Wang, H.L. Zhang, Y. Zhang, X.T. Wang, J.G. Wang, and M.J. Kim, The formation of atomic-level interfacial layer and its effect on thermal conductivity of W-coated diamond particles reinforced Al matrix composites, Compos. A: Appl. Sci. Manuf., 107(2018), p. 164. doi: 10.1016/j.compositesa.2018.01.002
    [33]
    W.L. Yang, K. Peng, J.J. Zhu, D.Y. Li, and L.P. Zhou, Enhanced thermal conductivity and stability of diamond/aluminum composite by introduction of carbide interface layer, Diam. Relat. Mater., 46(2014), p. 35. doi: 10.1016/j.diamond.2014.04.007
    [34]
    H.D. Zhang, J.J Zhang, Y. Liu, F. Zhang, T.X. Fan, and D. Zhang, Unveiling the interfacial configuration in diamond/Cu composites by using statistical analysis of metallized diamond surface, Scripta Mater., 152(2018), p. 84. doi: 10.1016/j.scriptamat.2018.04.021
    [35]
    S.B. Ren, X.Y. Shen, C.Y. Guo, N. Liu, J.B. Zang, X.B. He, and X.H. Qu, Effect of coating on the microstructure and thermal conductivities of diamond–Cu composites prepared by powder metallurgy, Compos. Sci. Technol., 71(2011), No. 13, p. 1550. doi: 10.1016/j.compscitech.2011.06.012
    [36]
    L.H. Wang, J.W. Li, Z.F. Che, X.T. Wang, H.L. Zhang, J.G. Wang, and M.J. Kim, Combining Cr pre-coating and Cr alloying to improve the thermal conductivity of diamond particles reinforced Cu matrix composites, J. Alloys Compd., 749(2018), p. 1098. doi: 10.1016/j.jallcom.2018.03.241
    [37]
    M.Y. Yuan, Z.Q. Tan, G.L. Fan, D.B. Xiong, Q. Guo, C.P. Guo, Z.Q. Li, and D. Zhang, Theoretical modelling for interface design and thermal conductivity prediction in diamond/Cu composites, Diam. Relat. Mater., 81(2018), p. 38. doi: 10.1016/j.diamond.2017.11.010
    [38]
    A.M. Abyzov, M.J. Kruszewski, Ł. Ciupiński, M. Mazurkiewicz, A. Michalski, and K.J. Kurzydłowski, Diamond–tungsten based coating-copper composites with high thermal conductivity produced by Pulse Plasma Sintering, Mater. Des., 76(2015), p. 97. doi: 10.1016/j.matdes.2015.03.056
    [39]
    Y.P. Pan, X.B. He, S.B. Ren, M. Wu, and X.H. Qu, High thermal conductivity of diamond/copper composites produced with Cu–ZrC double-layer coated diamond particles, J. Mater. Sci., 53(2018), No. 12, p. 8978. doi: 10.1007/s10853-018-2184-9
    [40]
    H.H. Zou, H. Bai, J.H. Yu, Y. Wang, Q.L. Liao, K. Nishimura, L.M. Zeng, and N. Jiang, Architecting graphene nanowalls on diamond powder surface, Compos. B: Eng., 73(2015), p. 57. doi: 10.1016/j.compositesb.2014.12.007
    [41]
    H.J. Cao, Z.Q. Tan, M.H. Lu, G. Ji, X.J. Yan, C. Di, M.Y. Yuan, Q. Guo, Y.S. Su, A. Addad, Z.Q. Li, and D.B. Xiong, Graphene interlayer for enhanced interface thermal conductance in metal matrix composites: An approach beyond surface metallization and matrix alloying, Carbon, 150(2019), p. 60. doi: 10.1016/j.carbon.2019.05.004
    [42]
    X.Z. Wu, L.Y. Li, W. Zhang, M.X. Song, W.L. Yang, and K. Peng, Effect of surface roughening on the interfacial thermal conductance of diamond/copper composites, Diam. Relat. Mater., 98(2019), art. No. 107467. doi: 10.1016/j.diamond.2019.107467
    [43]
    L. Zhang, Q.P. Wei, J.J. An, L. Ma, K.C. Zhou, W.T. Ye, Z.M. Yu, X.P. Gan, C.T. Lin, and J.T. Luo, Construction of 3D interconnected diamond networks in Al-matrix composite for high-efficiency thermal management, Chem. Eng. J., 380(2020), art. No. 122551. doi: 10.1016/j.cej.2019.122551
    [44]
    Z.N. Xie, H. Guo, X.M. Zhang, and S.H. Huang, Enhancing thermal conductivity of Diamond/Cu composites by regulating distribution of bimodal diamond particles, Diam. Relat. Mater., 100(2019), art. No. 107564. doi: 10.1016/j.diamond.2019.107564
    [45]
    K. Yoshida and H. Morigami, Thermal properties of diamond/copper composite material, Microelectron. Reliab., 44(2004), No. 2, p. 303. doi: 10.1016/S0026-2714(03)00215-4
    [46]
    H. Chen, C.C. Jia, S.J. Li, X. Jia, and X. Yang, Selective interfacial bonding and thermal conductivity of diamond/Cu-alloy composites prepared by HPHT technique, Int. J. Miner. Metall. Mater., 19(2012), No. 4, p. 364. doi: 10.1007/s12613-012-0565-7
    [47]
    K. Chu, C.C. Jia, H. Guo, and W.S. Li, On the thermal conductivity of Cu–Zr/diamond composites, Mater. Des., 45(2013), p. 36. doi: 10.1016/j.matdes.2012.09.006
    [48]
    C.Y. Chung, M.T. Lee, M.Y. Tsai, C.H. Chu, and S.J. Lin, High thermal conductive diamond/Cu–Ti composites fabricated by pressureless sintering technique, Appl. Therm. Eng., 69(2014), No. 1-2, p. 208. doi: 10.1016/j.applthermaleng.2013.11.065
    [49]
    P. Mańkowski, A. Dominiak, R. Domański, M.J. Kruszewski, and Ł. Ciupiński, Thermal conductivity enhancement of copper–diamond composites by sintering with chromium additive, J. Therm. Anal. Calorim., 116(2014), No. 2, p. 881. doi: 10.1007/s10973-013-3604-3
    [50]
    J. Grzonka, M.J. Kruszewski, M. Rosiński, Ł. Ciupiński, A. Michalski, and K.J. Kurzydłowski, Interfacial microstructure of copper/diamond composites fabricated via a powder metallurgical route, Mater. Charact., 99(2015), p. 188. doi: 10.1016/j.matchar.2014.11.032
    [51]
    L.H. Wang, J.W. Li, M. Catalano, G.Z. Bai, N. Li, J.J. Dai, X.T. Wang, H.L. Zhang, J.G. Wang, and M.J. Kim, Enhanced thermal conductivity in Cu/diamond composites by tailoring the thickness of interfacial TiC layer, Compos. A: Appl. Sci. Manuf., 113(2018), p. 76. doi: 10.1016/j.compositesa.2018.07.023
    [52]
    P.F. Tao, H. Bai, C. Xue, J.L. Lü, and Z.Y. Zhao, Microstructure and thermal properties of diamond/Al composites, Cemented Carbide, 33(2016), No. 2, p. 102.
    [53]
    C.Y. Guo, X.B. He, S.B. Ren, and X.H. Qu, Effect of (0–40) wt. % Si addition to Al on the thermal conductivity and thermal expansion of diamond/Al composites by pressure infiltration, J. Alloys Compd., 664(2016), p. 777. doi: 10.1016/j.jallcom.2015.12.255
    [54]
    C.Y. Guo, X.B. He, S.B. Ren, and X.H. Qu, Thermal properties of diamond/Al composites by pressure infiltration: Comparison between methods of coating Ti onto diamond surfaces and adding Si into Al matrix, Rare Met., 35(2016), No. 3, p. 249. doi: 10.1007/s12598-015-0672-5
    [55]
    W. Cui, H. Xu, J.H. Chen, S.B. Ren, X.B. He, and X.H. Qu, Effect of sintering on the relative density of Cr-coated diamond/Cu composites prepared by spark plasma sintering, Int. J. Miner. Metall. Mater., 23(2016), No. 6, p. 716. doi: 10.1007/s12613-016-1285-1
    [56]
    Ł. Ciupiński, M.J. Kruszewski, J. Grzonka, M. Chmielewski, R. Zielińsk, D. Moszczyńska, and A. Michalski, Design of interfacial Cr3C2 carbide layer via optimization of sintering parameters used to fabricate copper/diamond composites for thermal management applications, Mater. Des., 120(2017), p. 170. doi: 10.1016/j.matdes.2017.02.005
    [57]
    Y.H. Sun, L.K. He, C. Zhang, Q.N. Meng, B.C. Liu, K. Gao, M. Wen, and W.T. Zheng, Enhanced tensile strength and thermal conductivity in copper diamond composites with B4C coating, Sci. Rep., 7(2017), art. No. 10727. doi: 10.1038/s41598-017-11142-y
    [58]
    J.H. Jia, S.X. Bai, D.G. Xiong, J. Wang, and J. Chang, Effect of tungsten based coating characteristics on microstructure and thermal conductivity of diamond/Cu composites prepared by pressueless infiltration, Ceram. Int., 45(2019), No. 8, p. 10810. doi: 10.1016/j.ceramint.2019.02.156
    [59]
    S.H. Huang, H. Guo, Z. Zhang, X.M. Zhang, H.F. Xie, Z.N. Xie, L.J. Peng, and X.J. Mi, Comparative study on the properties and microscopic mechanism of Ti coating and W coating diamond–copper composites, Mater. Res. Express, 7(2020), No. 7, art. No. 076517. doi: 10.1088/2053-1591/aba55d
    [60]
    L. Lei, L. Bolzoni, and F. Yang, High thermal conductivity and strong interface bonding of a hot-forged Cu/Ti-coated-diamond composite, Carbon, 168(2020), p. 553. doi: 10.1016/j.carbon.2020.07.001
    [61]
    Y.Q. Li, H.Y. Zhou, C.J. Wu, Z. Yin, C. Liu, Y. Huang, J.Y. Liu, and Z.L. Shi, The interface and fabrication process of diamond/Cu composites with nanocoated diamond for heat sink applications, Metals, 11(2021), No. 2, art. No. 196. doi: 10.3390/met11020196
    [62]
    C. Xue and J.K. Yu, Enhanced thermal conductivity in diamond/aluminum composites: Comparison between the methods of adding Ti into Al matrix and coating Ti onto diamond surface, Surf. Coat. Technol., 217(2013), p. 46. doi: 10.1016/j.surfcoat.2012.11.070
    [63]
    Y. Zhang, J.W. Li, L.L. Zhao, and X.T. Wang, Optimisation of high thermal conductivity Al/diamond composites produced by gas pressure infiltration by controlling infiltration temperature and pressure, J. Mater. Sci., 50(2015), No. 2, p. 688. doi: 10.1007/s10853-014-8628-y
    [64]
    L. Xin, X. Tian, W.S. Yang, G.Q. Chen, J. Qiao, F.J. Hu, Q. Zhang, and G.H. Wu, Enhanced stability of the Diamond/Al composites by W coatings prepared by the magnetron sputtering method, J. Alloys Compd., 763(2018), p. 305. doi: 10.1016/j.jallcom.2018.05.310
    [65]
    C. Zhang, R.C. Wang, Z.Y. Cai, C.Q. Peng, and N.G. Wang, Low-temperature densification of diamond/Cu composite prepared from dual-layer coated diamond particles, J. Mater. Sci.: Mater. Electron., 26(2015), No. 1, p. 185. doi: 10.1007/s10854-014-2381-5
    [66]
    C. Zhang, R.C. Wang, Z.Y. Cai, C.Q. Peng, Y. Feng, and L. Zhang, Effects of dual-layer coatings on microstructure and thermal conductivity of diamond/Cu composites prepared by vacuum hot pressing, Surf. Coat. Technol., 277(2015), p. 299. doi: 10.1016/j.surfcoat.2015.07.059
    [67]
    X.Z. Wu, D.Q. Wan, W. Zhang, M.X. Song, and K. Peng, Constructing efficient heat transfer channels at the interface of Diamond/Cu composites, Compos. Interfaces, 28(2021), No. 6, p. 625. doi: 10.1080/09276440.2020.1795466
    [68]
    R. Tavangar, J.M. Molina, and L. Weber, Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast, Scripta Mater., 56(2007), No. 5, p. 357. doi: 10.1016/j.scriptamat.2006.11.008
    [69]
    D.P.H. Hasselman and L.F. Johnson, Effective thermal conductivity of composites with interfacial thermal barrier resistance, J. Compos. Mater., 21(1987), No. 6, p. 508. doi: 10.1177/002199838702100602
    [70]
    M. Mohr, K. Brühne, and H.J. Fecht, Thermal conductivity of nanocrystalline diamond films grown by hot filament chemical vapor deposition, Phys. Status Solidi A, 213(2016), No. 10, p. 2590. doi: 10.1002/pssa.201600171
    [71]
    G. Chang, F.Y. Sun, J.L. Duan, Z.F. Che, X.T. Wang, J.G. Wang, M.J. Kim, and H.L. Zhang, Effect of Ti interlayer on interfacial thermal conductance between Cu and diamond, Acta Mater., 160(2018), p. 235. doi: 10.1016/j.actamat.2018.09.004
    [72]
    G. Chang, F.Y. Sun, L.H. Wang, Y. Zhang, X.T. Wang, J.G. Wang, M.J. Kim, and H.L. Zhang, Mo-interlayer-mediated thermal conductance at Cu/diamond interface measured by time-domain thermoreflectance, Compos. A: Appl. Sci. Manuf., 135(2020), art. No. 105921. doi: 10.1016/j.compositesa.2020.105921
    [73]
    U. Bhandari, C.Y. Zhang, S.M. Guo, and S.Z. Yang, First-principles study on the mechanical and thermodynamic properties of MoNbTaTiW, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1398. doi: 10.1007/s12613-020-2077-1
    [74]
    X.R. Shi, S.M. Huang, Y. Huang, Y.J. Zhang, S.B. Zong, S.S. Xu, Y.Y. Chen, and P. Ma, Atomic structures and electronic properties of Ni or N modified Cu/diamond interface, J. Phys.: Condens. Matter, 32(2020), No. 22, art. No. 225001. doi: 10.1088/1361-648X/ab686b
    [75]
    C. Monachon, G. Schusteritsch, E. Kaxiras, and L. Weber, Qualitative link between work of adhesion and thermal conductance of metal/diamond interfaces, J. Appl. Phys., 115(2014), No. 12, art. No. 123509. doi: 10.1063/1.4869668
    [76]
    H.N. Xie, Y.T. Chen, T.B. Zhang, N.Q. Zhao, C.S. Shi, C.N. He, and E.Z. Liu, Adhesion, bonding and mechanical properties of Mo doped diamond/Al (Cu) interfaces: A first principles study, Appl. Surf. Sci., 527(2020), art. No. 146817. doi: 10.1016/j.apsusc.2020.146817
    [77]
    L. Chen, S.T. Chen, and Y. Hou, Understanding the thermal conductivity of diamond/copper composites by first-principles calculations, Carbon, 148(2019), p. 249. doi: 10.1016/j.carbon.2019.03.051
    [78]
    C. Zhang, Z.Y. Cai, Y.G. Tang, R.C. Wang, C.Q. Peng, and Y. Feng, Microstructure and thermal behavior of diamond/Cu composites: Effects of surface modification, Diam. Relat. Mater., 86(2018), p. 98. doi: 10.1016/j.diamond.2018.04.020
    [79]
    Z.B. Sun, Z.R. Tian, L. Weng, Y. Liu, J.J. Zhang, and T.X. Fan, The effect of thermal mismatch on the thermal conductance of Al/SiC and Cu/diamond composites, J. Appl. Phys., 127(2020), No. 4, art. No. 045101. doi: 10.1063/1.5133982
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Share Article

    Article Metrics

    Article Views(3342) PDF Downloads(365) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return