Yingbo Dong, Shijia Chong, and Hai Lin, Bioleaching and biosorption behavior of vanadium-bearing stone coal by Bacillus mucilaginosus, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 283-292. https://doi.org/10.1007/s12613-021-2344-9
Cite this article as:
Yingbo Dong, Shijia Chong, and Hai Lin, Bioleaching and biosorption behavior of vanadium-bearing stone coal by Bacillus mucilaginosus, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 283-292. https://doi.org/10.1007/s12613-021-2344-9
Research Article

Bioleaching and biosorption behavior of vanadium-bearing stone coal by Bacillus mucilaginosus

+ Author Affiliations
  • Corresponding author:

    Hai Lin    E-mail: linhai@ces.ustb.edu.cn

  • Received: 5 August 2021Revised: 17 August 2021Accepted: 19 August 2021Available online: 21 August 2021
  • The recovery of vanadium (V) from stone coal by bioleaching is a promising method. The bioleaching experiments and the biosorption experiments were carried out, aiming to explore the adsorption characteristics of Bacillus mucilaginosus (B. mucilaginosus) on the surface of vanadium-bearing stone coal, and the related mechanisms have been investigated. After bioleaching at 30°C for 28 d, the cumulative leaching rate of V reached 60.2%. The biosorption of B. mucilaginosus on stone coal was affected by many factors. When the pH value of leaching system is 5.0, strong electrostatic attraction between bacteria and stone coal promoted biosorption. Bacteria in the logarithmic growth phase had mature and excellent biosorption properties. The initial bacterial concentration of 3.5 × 108 CFU/mL was conducive to adhesion, with 38.9% adsorption rate and 3.6 × 107 CFU/g adsorption quantity. The adsorption of B. mucilaginosus on the stone coal conformed to the Freundlich model and the pseudo-second-order kinetic model. Bacterial surface carried functional groups (–CH2, –CH3, –NH2, etc.), which were highly correlated with the adsorption behavior. In addition, biosorption changed the surface properties of stone coal, resulting in the isoelectric point (IEP) approaching the bacteria. The results could provide an effective reference for the adsorption laws of bacteria on minerals.
  • loading
  • [1]
    M.A. Faramarzi, M. Mogharabi-Manzari, and H. Brandl, Bioleaching of metals from wastes and low-grade sources by HCN-forming microorganisms, Hydrometallurgy, 191(2020), art. No. 105228. doi: 10.1016/j.hydromet.2019.105228
    [2]
    H.F. Zhao, H.Y. Yang, L.L. Tong, Q. Zhang, and Y. Kong, Biooxidation–thiosulfate leaching of refractory gold concentrate, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1075. doi: 10.1007/s12613-020-1964-9
    [3]
    S.H. Yin, L.M. Wang, A.X. Wu, X. Chen, and R.F. Yan, Research progress in enhanced bioleaching of copper sulfides under the intervention of microbial communities, Int. J. Miner. Metall. Mater., 26(2019), No. 11, p. 1337. doi: 10.1007/s12613-019-1826-5
    [4]
    Y.B. Dong, H. Lin, Y. Liu, and Y. Zhao, Blank roasting and bioleaching of stone coal for vanadium recycling, J. Clean. Prod., 243(2020), art. No. 118625. doi: 10.1016/j.jclepro.2019.118625
    [5]
    Y. Lv, J. Li, H.P. Ye, et al., Bioleaching of silicon in electrolytic manganese residue using single and mixed silicate bacteria, Bioprocess Biosyst. Eng., 42(2019), No. 11, p. 1819. doi: 10.1007/s00449-019-02178-7
    [6]
    Y.F. Zhou, R.C. Wang, X.C. Lu, and T.H. Chen, Roles of adhered Paenibacillus polymyxa in the dissolution and flotation of bauxite: A dialytic investigation, Front. Earth Sci. China, 4(2010), No. 2, p. 167. doi: 10.1007/s11707-010-0021-9
    [7]
    Z. Xue, Z.Y. Nie, H.C. Liu, et al., Effect of the surface microstructure of arsenopyrite on the attachment of Sulfobacillus thermosulfidooxidans in the presence of dissolved As(III), Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1135. doi: 10.1007/s12613-020-2231-9
    [8]
    H. Abdollahi, M. Noaparast, S.Z. Shafaei, et al., Silver-catalyzed bioleaching of copper, molybdenum and rhenium from a chalcopyrite–molybdenite concentrate, Int. Biodeterior. Biodegrad., 104(2015), p. 194. doi: 10.1016/j.ibiod.2015.05.025
    [9]
    M.N. Chandraprabha and K.A. Natarajan, Surface chemical and flotation behaviour of chalcopyrite and pyrite in the presence of Acidithiobacillus thiooxidans, Hydrometallurgy, 83(2006), No. 1-4, p. 146. doi: 10.1016/j.hydromet.2006.03.021
    [10]
    J.Z. Sun, J.K. Wen, B.W. Chen, and B. Wu, Mechanism of Mg2+ dissolution from olivine and serpentine: Implication for bioleaching of high-magnesium nickel sulfide ore at elevated pH, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1069. doi: 10.1007/s12613-019-1823-8
    [11]
    J.T. He, Z.L. Cai, Y.M. Zhang, N.N. Xue, X.J. Wang, and Q.S. Zheng, Effects of energy source on bioleaching of vanadium-bearing shale by Acidithiobacillus ferrooxidans, Biochem. Eng. J., 151(2019), art. No. 107355. doi: 10.1016/j.bej.2019.107355
    [12]
    Y.B. Dong, H. Lin, X.F. Xu, and S.S. Zhou, Bioleaching of different copper sulfides by Acidithiobacillus ferrooxidans and its adsorption on minerals, Hydrometallurgy, 140(2013), p. 42. doi: 10.1016/j.hydromet.2013.05.009
    [13]
    S.N. Tan and M. Chen, Early stage adsorption behaviour of Acidithiobacillus ferrooxidans on minerals I: An experimental approach, Hydrometallurgy, 119-120(2012), p. 87. doi: 10.1016/j.hydromet.2012.02.001
    [14]
    Z.H. Wang, X.H. Xie, and J.S. Liu, Experimental measurements of short-term adsorption of Acidithiobacillus ferrooxidans onto chalcopyrite, Trans. Nonferrous Met. Soc. China, 22(2012), No. 2, p. 442. doi: 10.1016/S1003-6326(11)61196-5
    [15]
    J.Y. Zhu, Q. Li, W.F. Jiao, et al., Adhesion forces between cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans or Leptospirillum ferrooxidans and chalcopyrite, Colloids Surf. B Biointerfaces, 94(2012), p. 95. doi: 10.1016/j.colsurfb.2012.01.022
    [16]
    W.L. Feng, Y.Y. Li, Z.Y. Lin, et al., The influence on biosorption potentials of metal-resistant bacteria Enterobacter sp. EG16 and Bacillus subtilis DBM by typical red soil minerals, J. Soils Sediments, 20(2020), No. 8, p. 3217. doi: 10.1007/s11368-020-02650-y
    [17]
    N.Q. Lu, T.J. Hu, Y.B. Zhai, et al., Fungal cell with artificial metal container for heavy metals biosorption: Equilibrium, kinetics study and mechanisms analysis, Environ. Res., 182(2020), art. No. 109061. doi: 10.1016/j.envres.2019.109061
    [18]
    B. Shojaei and I. Khazaee, 1-D transient microbial fuel cell simulation considering biofilm growth and temperature variation, Int. J. Therm. Sci., 162(2021), art. No. 106801. doi: 10.1016/j.ijthermalsci.2020.106801
    [19]
    Y. Lv, J. Li, H. Ye, et al., Bioleaching of electrolytic manganese residue by silicate bacteria, and optimization of parameters during the leaching process, Min. Metall. Explor., 35(2018), No. 4, p. 176. doi: 10.19150/mmp.8594
    [20]
    X. Wang, H. Lin, Y.B. Dong, and G.Y. Li, Bioleaching of vanadium from barren stone coal and its effect on the transition of vanadium speciation and mineral phase, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 253. doi: 10.1007/s12613-018-1568-9
    [21]
    Y. Lv, J. Li, H.P. Ye, et al., Bioleaching behaviors of silicon and metals in electrolytic manganese residue using silicate bacteria, J. Clean. Prod., 228(2019), p. 901. doi: 10.1016/j.jclepro.2019.04.289
    [22]
    W. Luo and X.C. Zheng, Adsorption behaviors of Rhodotorula sp. in the bioleaching process of Acidithiobacillus ferrooxidans, J. Environ. Eng., 145(2019), No. 11, art. No. 04019073. doi: 10.1061/(ASCE)EE.1943-7870.0001592
    [23]
    Z.Z. Huang, S.S. Feng, Y.J. Tong, and H.L. Yang, Enhanced “contact mechanism” for interaction of extracellular polymeric substances with low-grade copper-bearing sulfide ore in bioleaching by moderately thermophilic Acidithiobacillus caldus, J. Environ. Manage., 242(2019), p. 11. doi: 10.1016/j.jenvman.2019.04.030
    [24]
    Y.G. Wang, K. Li, X.H. Chen, and H.B. Zhou, Responses of microbial community to pH stress in bioleaching of low grade copper sulfide, Bioresour. Technol., 249(2018), p. 146. doi: 10.1016/j.biortech.2017.10.016
    [25]
    M. Farahat, T. Hirajima, K. Sasaki, and K. Doi, Adhesion of Escherichia coli onto quartz, hematite and corundum: Extended DLVO theory and flotation behavior, Colloids Surf. B, 74(2009), No. 1, p. 140. doi: 10.1016/j.colsurfb.2009.07.009
    [26]
    N. Yee, J.B. Fein, and C.J. Daughney, Experimental study of the pH, ionic strength, and reversibility behavior of bacteria–mineral adsorption, Geochim. Cosmochim. Acta, 64(2000), No. 4, p. 609. doi: 10.1016/S0016-7037(99)00342-7
    [27]
    A.R. Shashikala and A.M. Raichur, Role of interfacial phenomena in determining adsorption of Bacillus polymyxa onto hematite and quartz, Colloids Surf. B Biointerfaces, 24(2002), No. 1, p. 11. doi: 10.1016/S0927-7765(01)00217-X
    [28]
    X.D. Hao, X.D. Liu, Q. Yang, et al., Comparative study on bioleaching of two different types of low-grade copper tailings by mixed moderate thermophiles, Trans. Nonferrous Met. Soc. China, 28(2018), No. 9, p. 1847. doi: 10.1016/S1003-6326(18)64829-0
    [29]
    Y. Gurevich, M. Teremova, G. Bondarenko, and S. Kislan, Bio-chemical leaching of kaolinite–hematite–boehmite type bauxite ore, Indian J. Chem. Technol., 22(2015), No. 5, p. 248.
    [30]
    A. Monballiu, N. Cardon, M. Tri Nguyen, et al., Tolerance of chemoorganotrophic bioleaching microorganisms to heavy metal and alkaline stresses, Bioinorg. Chem. Appl., 2015(2015), art. No. 861874. doi: 10.1155/2015/861874
    [31]
    T.N. Tran, D.G. Kim, and S.O. Ko, Encapsulation of biogenic manganese oxide and Pseudomonas putida MnB1 for removing 17 α-ethinylestradiol from aquatic environments, J. Water Process Eng., 37(2020), art. No. 101423. doi: 10.1016/j.jwpe.2020.101423
    [32]
    S. Charaabi, R. Absi, A.M. Pensé-Lhéritier, M. Le Borgne, and S. Issa, Adsorption studies of benzophenone-3 onto clay minerals and organosilicates: Kinetics and modelling, Appl. Clay Sci., 202(2021), art. No. 105937. doi: 10.1016/j.clay.2020.105937
    [33]
    R.L. Yu, Z.H. Liu, Z.J. Yu, et al., Relationship among the secretion of extracellular polymeric substances, heat resistance, and bioleaching ability of Metallosphaera sedula, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1504. doi: 10.1007/s12613-019-1851-4
    [34]
    R.Y. Zhang, S. Hedrich, F. Römer, D. Goldmann, and A. Schippers, Bioleaching of cobalt from Cu/Co-rich sulfidic mine tailings from the polymetallic Rammelsberg mine, Germany, Hydrometallurgy, 197(2020), art. No. 105443. doi: 10.1016/j.hydromet.2020.105443
    [35]
    H.F. Yang, T. Li, Y.H. Chang, H. Luo, and Q.Y. Tang, Possibility of using strain F9 (Serratia marcescens) as a bio-collector for hematite flotation, Int. J. Miner. Metall. Mater., 21(2014), No. 3, p. 210. doi: 10.1007/s12613-014-0887-8
    [36]
    R.H. Lara, J.V. García-Meza, R. Cruz, D. Valdez-Pérez, and I. González, Influence of the sulfur species reactivity on biofilm conformation during pyrite colonization by Acidithiobacillus thiooxidans, Appl. Microbiol. Biotechnol., 95(2012), No. 3, p. 799. doi: 10.1007/s00253-011-3715-3
    [37]
    H. Nouri, E. Azin, A. Kamyabi, and H. Moghimi, Biosorption performance and cell surface properties of a fungal-based sorbent in azo dye removal coupled with textile wastewater, Int. J. Environ. Sci. Technol., 18(2021), No. 9, p. 2545. doi: 10.1007/s13762-020-03011-5
    [38]
    J.Y. Zhu, Q.F. Wang, S. Zhou, et al., Insights into the relation between adhesion force and chalcopyrite-bioleaching by Acidithiobacillus ferrooxidans, Colloids Surf. B, 126(2015), p. 351. doi: 10.1016/j.colsurfb.2014.11.036
    [39]
    Y.L. Huang, Y.S. Zhang, H.B. Zhao, et al., Bioleaching of chalcopyrite–bornite and chalcopyrite–pyrite mixed ores in the presence of moderately thermophilic microorganisms, Int. J. Electrochem. Sci., (2017), p. 10493. doi: 10.20964/2017.11.33
    [40]
    A. Adamou, A. Nicolaides, and C. Varotsis, Bio-hydrometallurgy dynamics of copper sulfide-minerals probed by micro-FTIR mapping and Raman microspectroscopy, Miner. Eng., 132(2019), p. 39. doi: 10.1016/j.mineng.2018.11.038
    [41]
    P.C. Hu, Y.M. Zhang, T. Liu, et al., Highly selective separation of vanadium over iron from stone coal by oxalic acid leaching, J. Ind. Eng. Chem., 45(2017), p. 241. doi: 10.1016/j.jiec.2016.09.029
    [42]
    R.L. Yu, C.W. Hou, A.J. Liu, et al., Extracellular DNA enhances the adsorption of Sulfobacillus thermosulfidooxidans strain ST on chalcopyrite surface, Hydrometallurgy, 176(2018), p. 97. doi: 10.1016/j.hydromet.2018.01.018
    [43]
    D. Fullston, D. Fornasiero, and J. Ralston, Zeta potential study of the oxidation of copper sulfide minerals, Colloids Surf. A Physicochem. Eng. Aspects, 146(1999), No. 1-3, p. 113. doi: 10.1016/S0927-7757(98)00725-0
    [44]
    W. Sand, T. Gehrke, P.G. Jozsa, and A. Schippers, (Bio)chemistry of bacterial leaching—Direct vs. indirect bioleaching, Hydrometallurgy, 59(2001), No. 2-3, p. 159. doi: 10.1016/S0304-386X(00)00180-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(961) PDF Downloads(82) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return