Yue Zhao, Bei Wang, Minjie Shi, Shibo An, Liping Zhao, and Chao Yan, Mg-intercalation engineering of MnO2 electrode for high-performance aqueous magnesium-ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 1954-1962. https://doi.org/10.1007/s12613-021-2346-7
Cite this article as:
Yue Zhao, Bei Wang, Minjie Shi, Shibo An, Liping Zhao, and Chao Yan, Mg-intercalation engineering of MnO2 electrode for high-performance aqueous magnesium-ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 1954-1962. https://doi.org/10.1007/s12613-021-2346-7
Research Article

Mg-intercalation engineering of MnO2 electrode for high-performance aqueous magnesium-ion batteries

+ Author Affiliations
  • Corresponding authors:

    Minjie Shi    E-mail: shiminjie@just.edu.cn

    Chao Yan    E-mail: chaoyan@just.edu.cn

  • Received: 15 May 2021Revised: 28 August 2021Accepted: 30 August 2021Available online: 31 August 2021
  • Rechargeable aqueous magnesium-ion batteries (MIBs) show great promise for low-cost, high-safety, and high-performance energy storage applications. Although manganese dioxide (MnO2) is considered as a potential electrode material for aqueous MIBs, the low electrical conductivity and unsatisfactory cycling performance greatly hinder the practical application of MnO2 electrode. To overcome these problems, herein, a novel Mg-intercalation engineering approach for MnO2 electrode to be used in aqueous MIBs is presented, wherein the structural regulation and electrochemical performance of the Mg-intercalation MnO2 (denoted as MMO) electrode were thoroughly investigated by density functional theory (DFT) calculations and in-situ Raman investigation. The results demonstrate that the Mg intercalation is essential to adjusting the charge/ion state and electronic band gap of MMO electrode, as well as the highly reversible phase transition of the MMO electrode during the charging–discharging process. Because of these remarkable characteristics, the MMO electrode can be capable of delivering a significant specific capacity of ~419.8 mAh·g−1, while exhibiting a good cycling capability over 1000 cycles in 1 M aqueous MgCl2 electrolyte. On the basis of such MMO electrode, we have successfully developed a soft-packaging aqueous MIB with excellent electrochemical properties, revealing its huge application potential as the efficient energy storage devices.
  • loading
  • [1]
    G.J. Liang, F.N. Mo, X.L. Ji, and C.Y. Zhi, Non-metallic charge carriers for aqueous batteries, Nat. Rev. Mater., 6(2021), No. 2, p. 109. doi: 10.1038/s41578-020-00241-4
    [2]
    M. Ren, C.Y. Zhang, Y.L. Wang, and J.J. Cai, Development of N-doped carbons from zeolite-templating route as potential electrode materials for symmetric supercapacitors, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1482. doi: 10.1007/s12613-018-1703-7
    [3]
    T. Yang, H.J. Liu, F. Bai, E.H. Wang, J.H. Chen, K.C. Chou, and X.M. Hou, Supercapacitor electrode based on few-layer h-BNNSs/rGO composite for wide-temperature-range operation with robust stable cycling performance, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 220. doi: 10.1007/s12613-019-1910-x
    [4]
    C.P. Han, J.X. Zhu, C.Y. Zhi, and H.F. Li, The rise of aqueous rechargeable batteries with organic electrode materials, J. Mater. Chem. A, 8(2020), No. 31, p. 15479. doi: 10.1039/D0TA03947K
    [5]
    J. Shin and J.W. Choi, Opportunities and reality of aqueous rechargeable batteries, Adv. Energy Mater., 10(2020), No. 28, art. No. 2001386. doi: 10.1002/aenm.202001386
    [6]
    G. Liu, Q.G. Chi, Y.Q. Zhang, Q.G. Chen, C.H. Zhang, K. Zhu, and D.X. Cao, Superior high rate capability of MgMn2O4/rGO nanocomposites as cathode materials for aqueous rechargeable magnesium ion batteries, Chem. Commun., 54(2018), No. 68, p. 9474. doi: 10.1039/C8CC05366A
    [7]
    H.Y. Zhang, K. Ye, S.X. Shao, X. Wang, K. Cheng, X. Xiao, G.L. Wang, and D.X. Cao, Octahedral magnesium manganese oxide molecular sieves as the cathode material of aqueous rechargeable magnesium-ion battery, Electrochim. Acta, 229(2017), p. 371. doi: 10.1016/j.electacta.2017.01.110
    [8]
    Y.Q. Zhang, G. Liu, C.H. Zhang, Q.G. Chi, T.D. Zhang, Y. Feng, K. Zhu, Y. Zhang, Q.G. Chen, and D.X. Cao, Low-cost MgFexMn2−xO4 cathode materials for high-performance aqueous rechargeable magnesium-ion batteries, Chem. Eng. J., 392(2020), art. No. 123652. doi: 10.1016/j.cej.2019.123652
    [9]
    F. Wang, X.L. Fan, T. Gao, W. Sun, Z.H. Ma, C.Y. Yang, F.D. Han, K. Xu, and C.S. Wang, High-voltage aqueous magnesium ion batteries, ACS Cent. Sci., 3(2017), No. 10, p. 1121. doi: 10.1021/acscentsci.7b00361
    [10]
    Y.C. Tang, X.J. Li, H.M. Lv, W.L. Wang, Q. Yang, C.Y. Zhi, and H.F. Li, High-energy aqueous magnesium hybrid full batteries enabled by carrier-hosting potential compensation, Angew. Chem. Int. Ed., 60(2021), No. 10, p. 5443. doi: 10.1002/anie.202013315
    [11]
    Y.L. Liang, Y. Jing, S. Gheytani, K.Y. Lee, P. Liu, A. Facchetti, and Y. Yao, Universal quinone electrodes for long cycle life aqueous rechargeable batteries, Nat. Mater., 16(2017), No. 8, p. 841. doi: 10.1038/nmat4919
    [12]
    X. Lei, Y.P. Zheng, F. Zhang, Y. Wang, and Y.B. Tang, Highly stable magnesium-ion-based dual-ion batteries based on insoluble small-molecule organic anode material, Energy Storage Mater., 30(2020), p. 34. doi: 10.1016/j.ensm.2020.04.025
    [13]
    L. Chen, J.L. Bao, X. Dong, D.G. Truhlar, Y. Wang, C. Wang, and Y. Xia, Aqueous Mg-ion battery based on polyimide anode and Prussian blue cathode, ACS Energy Lett., 2(2017), No. 5, p. 1115. doi: 10.1021/acsenergylett.7b00040
    [14]
    J.S. Kim, W.S. Chang, R.H. Kim, D.Y. Kim, D.W. Han, K.H. Lee, S.S. Lee, and S.G. Doo, High-capacity nanostructured manganese dioxide cathode for rechargeable magnesium ion batteries, J. Power Sources, 273(2015), p. 210. doi: 10.1016/j.jpowsour.2014.07.162
    [15]
    H.T. Zhu, Y.F. An, M.J. Shi, Z.Q. Li, N.T. Chen, C. Yang, and P. Xiao, Porous N-doped carbon/MnO2 nanoneedles for high performance ionic liquid-based supercapacitors, Mater. Lett., 296(2021), art. No. 129837. doi: 10.1016/j.matlet.2021.129837
    [16]
    K.W. Nam, S. Kim, S. Lee, M. Salama, I. Shterenberg, Y. Gofer, J.S. Kim, E. Yang, C.S. Park, J.S. Kim, S.S. Lee, W.S. Chang, S.G. Doo, Y.N. Jo, Y. Jung, D. Aurbach, and J.W. Choi, The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries, Nano Lett., 15(2015), No. 6, p. 4071. doi: 10.1021/acs.nanolett.5b01109
    [17]
    H.Y. Zhang, D.X. Cao, and X. Bai, High rate performance of aqueous magnesium-ion batteries based on the δ-MnO2@carbon molecular sieves composite as the cathode and nanowire VO2 as the anode, J. Power Sources, 444(2019), art. No. 227299. doi: 10.1016/j.jpowsour.2019.227299
    [18]
    Z.Z. Liu, W.H. Zhou, J. He, H. Chen, R.X. Zhang, Q. Wang, Y. Wang, Y.G. Yan, and Y.G. Chen, Binder-free MnO2 as a high rate capability cathode for aqueous magnesium ion battery, J. Alloys Compd., 869(2021), art. No. 159279. doi: 10.1016/j.jallcom.2021.159279
    [19]
    C.L. Wu, G.Y. Zhao, X.Y. Bao, X. Chen, and K.N. Sun, Hierarchically porous delta-manganese dioxide films prepared by an electrochemically assistant method for Mg ion battery cathodes with high rate performance, J. Alloys Compd., 770(2019), p. 914. doi: 10.1016/j.jallcom.2018.08.123
    [20]
    Q.H. Zhao, A.Y. Song, S.X. Ding, R.Z. Qin, Y.H. Cui, S.N. Li, and F. Pan, Preintercalation strategy in manganese oxides for electrochemical energy storage: Review and prospects, Adv. Mater., 32(2020), No. 50, art. No. 2002450. doi: 10.1002/adma.202002450
    [21]
    J.W. Wang, X.L. Sun, H.Y. Zhao, L.L. Xu, J.L. Xia, M. Luo, Y.D. Yang, and Y.P. Du, Superior-performance aqueous zinc ion battery based on structural transformation of MnO2 by rare earth doping, J. Phys. Chem. C, 123(2019), No. 37, p. 22735. doi: 10.1021/acs.jpcc.9b05535
    [22]
    M. Asif, M. Rashad, Z. Ali, H.L. Qiu, W. Li, L.J. Pan, and Y.L. Hou, Ni-doped MnO2/CNT nanoarchitectures as a cathode material for ultra-long life magnesium/lithium hybrid ion batteries, Mater. Today Energy, 10(2018), p. 108. doi: 10.1016/j.mtener.2018.08.010
    [23]
    F. Kataoka, T. Ishida, K. Nagita, V. Kumbhar, K. Yamabuki, and M. Nakayama, Cobalt-doped layered MnO2 thin film electrochemically grown on nitrogen-doped carbon cloth for aqueous zinc-ion batteries, ACS Appl. Energy Mater., 3(2020), No. 5, p. 4720. doi: 10.1021/acsaem.0c00357
    [24]
    C. Wei, X.Y. Fu, L.L. Zhang, J. Liu, P.P. Sun, L. Gao, K.J. Chang, and X.L. Yang, Structural regulated nickel hexacyanoferrate with superior sodium storage performance by K-doping, Chem. Eng. J., 421(2021), art. No. 127760. doi: 10.1016/j.cej.2020.127760
    [25]
    M.J. Young, A.M. Holder, S.M. George, and C.B. Musgrave, Charge storage in cation incorporated α-MnO2, Chem. Mater., 27(2015), No. 4, p. 1172. doi: 10.1021/cm503544e
    [26]
    Z.M. Hu, X. Xiao, C. Chen, T.Q. Li, L. Huang, C.F. Zhang, J. Su, L. Miao, J.J. Jiang, Y.R. Zhang, and J. Zhou, Al-doped α-MnO2 for high mass-loading pseudocapacitor with excellent cycling stability, Nano Energy, 11(2015), p. 226. doi: 10.1016/j.nanoen.2014.10.015
    [27]
    H.Z. Zhang, Q.Y. Liu, J. Wang, K.F. Chen, D.F. Xue, J. Liu, and X.H. Lu, Boosting the Zn-ion storage capability of birnessite manganese oxide nanoflorets by La3+ intercalation, J. Mater. Chem. A, 7(2019), No. 38, p. 22079. doi: 10.1039/C9TA08418E
    [28]
    L. Wang, Q.Y. Wu, A. Abraham, P.J. West, L.M. Housel, G. Singh, N. Sadique, C.D. Quilty, D.R. Wu, E.S. Takeuchi, A.C. Marschilok, and K.J. Takeuchi, Silver-containing α-MnO2 nanorods: Electrochemistry in rechargeable aqueous Zn–MnO2 batteries, J. Electrochem. Soc., 166(2019), No. 15, p. A3575. doi: 10.1149/2.0101915jes
    [29]
    F.W. Fenta, B.W. Olbasa, M.C. Tsai, M.A. Weret, T.A. Zegeye, C.J. Huang, W.H. Huang, T.S. Zeleke, N.A. Sahalie, C.W. Pao, S.H. Wu, W.N. Su, H.J. Dai, and B.J. Hwang, Electrochemical transformation reaction of Cu–MnO in aqueous rechargeable zinc-ion batteries for high performance and long cycle life, J. Mater. Chem. A, 8(2020), No. 34, p. 17595. doi: 10.1039/D0TA04175K
    [30]
    A.M. Hashem, H.M. Abuzeid, N. Narayanan, H. Ehrenberg, and C.M. Julien, Synthesis, structure, magnetic, electrical and electrochemical properties of Al, Cu and Mg doped MnO2, Mater. Chem. Phys., 130(2011), No. 1-2, p. 33. doi: 10.1016/j.matchemphys.2011.04.074
    [31]
    H.F. Li, H.Y. Wang, M. Yang, Y.C. Sun, Y.R. Yin, and P.Z. Guo, Mg-inserted δ-MnO2 nanosheet assembly for enhanced energy storage, Colloids Surf. A, 602(2020), art. No. 125068. doi: 10.1016/j.colsurfa.2020.125068
    [32]
    Q. Chen, J.L. Jin, Z.K. Kou, C. Liao, Z.A. Liu, L. Zhou, J. Wang, and L.Q. Mai, Zn2+ pre-intercalation stabilizes the tunnel structure of MnO2 nanowires and enables zinc-ion hybrid supercapacitor of battery-level energy density, Small, 16(2020), No. 14, art. No. 2000091. doi: 10.1002/smll.202000091
    [33]
    L.L. Feng, Z.W. Xuan, H.B. Zhao, Y. Bai, J.M. Guo, C.W. Su, and X.K. Chen, MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery, Nanoscale Res. Lett., 9(2014), No. 1, art. No. 290. doi: 10.1186/1556-276X-9-290
    [34]
    X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, and L.F. Nazar, A highly efficient polysulfide mediator for lithium–sulfur batteries, Nat. Commun., 6(2015), art. No. 5682. doi: 10.1038/ncomms6682
    [35]
    Y. Xu, J. Wan, L. Huang, M.Y. Ou, C.Y. Fan, P. Wei, J. Peng, Y. Liu, Y.G. Qiu, X.P. Sun, C. Fang, Q. Li, J.T. Han, Y.H. Huang, J.A. Alonso, and Y.S. Zhao, Structure distortion induced monoclinic nickel hexacyanoferrate as high-performance cathode for Na-ion batteries, Adv. Energy Mater., 9(2019), No. 4, art. No. 1803158. doi: 10.1002/aenm.201803158
    [36]
    C. Ling, J.J. Chen, and F. Mizuno, First-principles study of alkali and alkaline earth ion intercalation in iron hexacyanoferrate: The important role of ionic radius, J. Phys. Chem. C, 117(2013), No. 41, p. 21158. doi: 10.1021/jp4078689
    [37]
    H.Y. Zhang, D.X. Cao, and X. Bai, Ni-Doped magnesium manganese oxide as a cathode and its application in aqueous magnesium-ion batteries with high rate performance, Inorg. Chem. Front., 7(2020), No. 11, p. 2168. doi: 10.1039/D0QI00067A
    [38]
    J.F. Yin, A.B. Brady, E.S. Takeuchi, A.C. Marschilok, and K.J. Takeuchi, Magnesium-ion battery-relevant electrochemistry of MgMn2O4: Crystallite size effects and the notable role of electrolyte water content, Chem. Commun., 53(2017), No. 26, p. 3665. doi: 10.1039/C7CC00265C
    [39]
    Z.J. Jia, J.W. Hao, L.J. Liu, Y. Wang, and T. Qi, Vertically aligned α-MnO2 nanosheets on carbon nanotubes as cathodic materials for aqueous rechargeable magnesium ion battery, Ionics, 24(2018), No. 11, p. 3483. doi: 10.1007/s11581-018-2499-1
    [40]
    X.H. Wang, T.S. Mathis, K. Li, Z.F. Lin, L. Vlcek, T. Torita, N.C. Osti, C. Hatter, P. Urbankowski, A. Sarycheva, M. Tyagi, E. Mamontov, P. Simon, and Y. Gogotsi, Influences from solvents on charge storage in titanium carbide MXenes, Nat. Energy, 4(2019), No. 3, p. 241. doi: 10.1038/s41560-019-0339-9
    [41]
    L. Naderi, S. Shahrokhian, and F. Soavi, Fabrication of a 2.8 V high-performance aqueous flexible fiber-shaped asymmetric micro-supercapacitor based on MnO2/PEDOT: PSS-reduced graphene oxide nanocomposite grown on carbon fiber electrode, J. Mater. Chem. A, 8(2020), No. 37, p. 19588. doi: 10.1039/D0TA06561G
    [42]
    Z.X. Lu, W.X. Wang, J. Zhou, and Z.C. Bai, FeS2@TiO2 nanorods as high-performance anode for sodium ion battery, Chin. J. Chem. Eng., 28(2020), No. 10, p. 2699. doi: 10.1016/j.cjche.2020.07.011
    [43]
    S. Cheng, L.F. Yang, D.C. Chen, X. Ji, Z.J. Jiang, D. Ding, and M.L. Liu, Phase evolution of an alpha MnO2-based electrode for pseudo-capacitors probed by in operando Raman spectroscopy, Nano Energy, 9(2014), p. 161. doi: 10.1016/j.nanoen.2014.07.008
    [44]
    T. Gao, H. Fjellvåg, and P. Norby, A comparison study on Raman scattering properties of α- and β-MnO2, Anal. Chim. Acta, 648(2009), No. 2, p. 235. doi: 10.1016/j.aca.2009.06.059
    [45]
    M.J. Shi, B. Wang, C. Chen, J.W. Lang, C. Yan, and X.B. Yan, 3D high-density MXene@MnO2 microflowers for advanced aqueous zinc-ion batteries, J. Mater. Chem. A, 8(2020), No. 46, p. 24635. doi: 10.1039/D0TA09085A
    [46]
    Q.N. Zhang, M.D. Levi, Q.Y. Dou, Y.L. Lu, Y.G. Chai, S.L. Lei, H.X. Ji, B. Liu, X.D. Bu, P.J. Ma, and X.B. Yan, The charge storage mechanisms of 2D cation-intercalated manganese oxide in different electrolytes, Adv. Energy Mater., 9(2019), No. 3, art. No. 1802707. doi: 10.1002/aenm.201802707
    [47]
    D.C. Chen, D. Ding, X.X. Li, G.H. Waller, X.H. Xiong, M.A. El-Sayed, and M.L. Liu, Probing the charge storage mechanism of a pseudocapacitive MnO2 electrode using in operando Raman spectroscopy, Chem. Mater., 27(2015), No. 19, p. 6608. doi: 10.1021/acs.chemmater.5b03118
    [48]
    M.J. Shi, B. Wang, Y. Shen, J.T. Jiang, W.H. Zhu, Y.J. Su, M. Narayanasamy, S. Angaiah, C. Yan, and Q. Peng, 3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries, Chem. Eng. J., 399(2020), art. No. 125627. doi: 10.1016/j.cej.2020.125627
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(1477) PDF Downloads(106) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return