Lebiao Yang, Xiaona Ren, Chao Cai, Pengju Xue, M. Irfan Hussain, Yusheng Shi,  and Changchun Ge, Effect of the capsule on deformation and densification behavior of nickel-based superalloy compact during hot isostatic pressing, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 122-130. https://doi.org/10.1007/s12613-021-2349-4
Cite this article as:
Lebiao Yang, Xiaona Ren, Chao Cai, Pengju Xue, M. Irfan Hussain, Yusheng Shi,  and Changchun Ge, Effect of the capsule on deformation and densification behavior of nickel-based superalloy compact during hot isostatic pressing, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 122-130. https://doi.org/10.1007/s12613-021-2349-4
Research Article

Effect of the capsule on deformation and densification behavior of nickel-based superalloy compact during hot isostatic pressing

+ Author Affiliations
  • Corresponding authors:

    Xiaona Ren    E-mail: renxn@ustb.edu.cn

    Chao Cai    E-mail: chaocai@hust.edu.cn

  • Received: 4 June 2021Revised: 6 September 2021Accepted: 6 September 2021Available online: 7 September 2021
  • The Shima yield criterion used in finite element analysis for nickel-based superalloy powder compact during hot isostatic pressing (HIP) was modified through uniaxial compression experiments. The influence of cylindrical capsule characteristics on FGH4096M superalloy powder compact deformation and densification behavior during HIP was investigated through simulations and experiments. Results revealed the simulation shrinkage prediction fitted well with the experimental shrinkage including a maximum shrinkage error of 1.5%. It was shown that the axial shrinkage was 1.7% higher than radial shrinkage for a cylindrical capsule with the size of ϕ50 mm × 100 mm due to the force arm difference along the axial and radial direction of the capsule. The stress deviated from the isostatic state in the capsule led to the uneven shrinkage and non-uniform densification of the powder compact. The ratio of the maximum radial displacement to axial displacement increased from 0.47 to 0.75 with the capsule thickness increasing from 2 to 4 mm. The pressure transmission is related to the capsule thickness, the capsule material performance, and physical parameters in the HIP process.
  • loading
  • [1]
    K. Chen, S.Y. Rui, F. Wang, J.X. Dong, and Z.H. Yao, Microstructure and homogenization process of as-cast GH4169D alloy for novel turbine disk, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 889. doi: 10.1007/s12613-019-1802-0
    [2]
    L.B. Yang, X.N. Ren, C.C. Ge, and Q.Z. Yan, Status and development of powder metallurgy nickel-based disk superalloys, Int. J. Mater. Res., 110(2019), No. 10, p. 901. doi: 10.3139/146.111820
    [3]
    S.S. Sun, Q. Teng, Y. Xie, T. Liu, R. Ma, J. Bai, C. Cai, and Q.S. Wei, Two-step heat treatment for laser powder bed fusion of a nickel-based superalloy with simultaneously enhanced tensile strength and ductility, Addit. Manuf., 46(2021), art. No. 102168.
    [4]
    C. Cai, K.K. Pan, Q. Teng, X.Y. Gao, B. Song, J. Liu, Q.S. Wei, K. Zhou, and Y.S. Shi, Simultaneously enhanced strength and ductility of FGH4097 nickel-based alloy via a novel hot isostatic pressing strategy, Mater. Sci. Eng. A, 760(2019), p. 19. doi: 10.1016/j.msea.2019.05.081
    [5]
    N.L. Loh and K.Y. Sia, An overview of hot isostatic pressing, J. Mater. Process. Technol., 30(1992), No. 1, p. 45. doi: 10.1016/0924-0136(92)90038-T
    [6]
    C. Cai, X.Y. Gao, Q. Teng, R. Kiran, J. Liu, Q.S. Wei, and Y.S. Shi, Hot isostatic pressing of a near α-Ti alloy: Temperature optimization, microstructural evolution and mechanical performance evaluation, Mater. Sci. Eng. A, 802(2021), art. No. 140426. doi: 10.1016/j.msea.2020.140426
    [7]
    H.V. Atkinson and S. Davies, Fundamental aspects of hot isostatic pressing: An overview, Metall. Mater. Trans. A, 31(2000), No. 12, p. 2981. doi: 10.1007/s11661-000-0078-2
    [8]
    F.L. Han, The PM HIP parts process and design guidelines, Powder Metall. Technol., 34(2016), No. 1, p. 62.
    [9]
    C.G. Hjorth, HIP powder metal near-net shapes for demanding environment and applications, J. Iron Steel Res. Int., 14(2007), No. 5, p. 121. doi: 10.1016/S1006-706X(08)60064-3
    [10]
    L.M. Tan, Y.P. Li, F. Liu, Y. Nie, and L. Jiang, Superplastic behavior of a powder metallurgy superalloy during isothermal compression, J. Mater. Sci. Technol., 35(2019), No. 11, p. 2591. doi: 10.1016/j.jmst.2019.05.025
    [11]
    Y. Wu, P.J. Xue, Q.S. Wei, and Y.S. Shi, Near-net-shaping hot isostatic pressing of Ti6Al4V alloys monolithic bladed disks, Rare Met. Mater. Eng., 44(2015), No. 2, p. 360.
    [12]
    C.L. Qiu, M.M. Attallah, X.H. Wu, and P. Andrews, Influence of hot isostatic pressing temperature on microstructure and tensile properties of a nickel-based superalloy powder, Mater. Sci. Eng. A, 564(2013), p. 176. doi: 10.1016/j.msea.2012.11.084
    [13]
    C. Broeckmann, Hot isostatic pressing of near net shape components - Process fundamentals and future challenges, Powder Metall., 55(2012), No. 3, p. 176. doi: 10.1179/0032589912Z.00000000063
    [14]
    G. Aryanpour, S. Mashl, and V. Warke, Elastoplastic–viscoplastic modelling of metal powder compaction: Application to hot isostatic pressing, Powder Metall., 56(2013), No. 1, p. 14. doi: 10.1179/1743290112Y.0000000027
    [15]
    S. Shima and M. Oyane, Plasticity theory for porous metals, Int. J. Mech. Sci., 18(1976), No. 6, p. 285. doi: 10.1016/0020-7403(76)90030-8
    [16]
    Y. Zhang and F.Z. Wang, Numerical simulation of effects of pressure on densification of hot isostatic pressing of CuCr25 powder, Hot Work. Technol., 47(2018), No. 2, p. 76.
    [17]
    Z.Q. Hou, Y.S. Shi, G.C. Liu, J.W. Wang, and Q.S. Wei, Investigation can’s deformation and densification for stainless steel powders during hot isostatic pressing, J. Mater. Metall., 10(2011), No. 2, p. 136.
    [18]
    R.P. Guo, L. Xu, J. Wu, Z.G. Lu, and R. Yang, Simulation of container design for powder metallurgy titanium components through hot-isostatic-pressing, Mater. Sci. Forum, 817(2015), p. 610. doi: 10.4028/www.scientific.net/MSF.817.610
    [19]
    L.H. Lang, G. Wang, X.N. Huang, S. Yu, W. Duan, and Q.Y. Xu, Shielding effect of capsules and its impact on mechanical properties of P/M aluminium alloys fabricated by hot isostatic pressing, Chin. J. Nonferrous Met., 26(2016), No. 2, p. 261.
    [20]
    Y.J. Yin, P. Zhang, J.X. Zhou, and Y.S. Shi, Correction on Shima yield criterion for Ti6Al4V powder HIP process, J. Huazhong Univ. Sci. Technol., 46(2018), No. 6, p. 14.
    [21]
    L.H. Lang, G.L. Bu, Y. Xue, and D.X. Zhang, Determine key parameters of simulation constitutive and process optimization for titanium alloy (Ti–6Al–4V) hot isostatic pressing, J. Plast. Eng., 18(2011), No. 4, p. 34.
    [22]
    G.C. Liu, Y.S. Shi, Q.S. Wei, and J.W. Wang, Finite element analysis of pressure influence on densification of titanium alloy powder under hot isostatic pressing, Key Eng. Mater., 450(2010), p. 206. doi: 10.4028/www.scientific.net/KEM.450.206
    [23]
    Z.H. Qu, J.T. Liu, G.X. Zhang, Y.W. Zhang, and Y. Tao, Numerical simulation of hot isostatic pressing process of FGH4097 superalloy, Trans. Mater. Heat Treat., 38(2017), No. 7, p. 173.
    [24]
    A. Nohara, T. Nakagawa, T. Soh, and T. Shinke, Numerical simulation of the densification behaviour of metal powder during hot isostatic pressing, Int. J. Numer. Methods Eng., 25(1988), No. 1, p. 213. doi: 10.1002/nme.1620250117
    [25]
    B. Fang, G.F. Tian, Z. Ji, M.Y. Wang, C.C. Jia, and S.W. Yang, Study on the thermal deformation behavior and microstructure of FGH96 heat extrusion alloy during two-pass hot deformation, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 657. doi: 10.1007/s12613-019-1774-0
    [26]
    Y.F. Feng, X.M. Zhou, J.W. Zou, and G.F. Tian, Effect of cooling rate during quenching on the microstructure and creep property of nickel-based superalloy FGH96, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 493. doi: 10.1007/s12613-019-1756-2
    [27]
    A. Svoboda, H.Å. Häggblad, and M. Näsström, Simulation of hot isostatic pressing of metal powder components to near net shape, Eng. Comput., 13(1996), No. 5, p. 13. doi: 10.1108/02644409610120713
    [28]
    H.H. Chen, Mac Finite Element Example Analysis Tutorial, China Machine Press, Beijing, 2002.
    [29]
    V. Samarov, D. Seliverstov, and F.H. (Sam) Froes, Fabrication of near-net-shape cost-effective titanium components by use of prealloyed powders and hot isostatic pressing, [in] M. Qian and F.H. (Sam) Froes, eds., Titanium Powder Metallurgy: Science, Technology and Applications, Butterworth-Heinemann, Waltham, 2015, p. 313.
    [30]
    H. ElRakayby, H. Kim, S. Hong, and K. Kim, An investigation of densification behavior of nickel alloy powder during hot isostatic pressing, Adv. Powder Technol., 26(2015), No. 5, p. 1314. doi: 10.1016/j.apt.2015.07.005
    [31]
    C. Cai, X. Wu, W. Liu, W. Zhu, H. Chen, J.C.D. Qiu, C.N. Sun, J. Liu, Q.S. Wei, and Y.S. Shi, Selective laser melting of near-α titanium alloy Ti–6Al–2Zr–1Mo–1V: Parameter optimization, heat treatment and mechanical performance, J. Mater. Sci. Technol., 57(2020), p. 51. doi: 10.1016/j.jmst.2020.05.004
    [32]
    C.Z. Lin, Stress analysis of a cylinder under uniform radial pressure, Mech. Eng., 2(1988), p. 52.
    [33]
    P. Dong, An analysis of the shielding effect of container on isocratic pressing, Met. Form. Technol., 20(2002), No. 3, p. 12.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(1049) PDF Downloads(95) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return