Cite this article as: |
Lebiao Yang, Xiaona Ren, Chao Cai, Pengju Xue, M. Irfan Hussain, Yusheng Shi, and Changchun Ge, Effect of the capsule on deformation and densification behavior of nickel-based superalloy compact during hot isostatic pressing, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 122-130. https://doi.org/10.1007/s12613-021-2349-4 |
Xiaona Ren E-mail: renxn@ustb.edu.cn
Chao Cai E-mail: chaocai@hust.edu.cn
[1] |
K. Chen, S.Y. Rui, F. Wang, J.X. Dong, and Z.H. Yao, Microstructure and homogenization process of as-cast GH4169D alloy for novel turbine disk, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 889. doi: 10.1007/s12613-019-1802-0
|
[2] |
L.B. Yang, X.N. Ren, C.C. Ge, and Q.Z. Yan, Status and development of powder metallurgy nickel-based disk superalloys, Int. J. Mater. Res., 110(2019), No. 10, p. 901. doi: 10.3139/146.111820
|
[3] |
S.S. Sun, Q. Teng, Y. Xie, T. Liu, R. Ma, J. Bai, C. Cai, and Q.S. Wei, Two-step heat treatment for laser powder bed fusion of a nickel-based superalloy with simultaneously enhanced tensile strength and ductility, Addit. Manuf., 46(2021), art. No. 102168.
|
[4] |
C. Cai, K.K. Pan, Q. Teng, X.Y. Gao, B. Song, J. Liu, Q.S. Wei, K. Zhou, and Y.S. Shi, Simultaneously enhanced strength and ductility of FGH4097 nickel-based alloy via a novel hot isostatic pressing strategy, Mater. Sci. Eng. A, 760(2019), p. 19. doi: 10.1016/j.msea.2019.05.081
|
[5] |
N.L. Loh and K.Y. Sia, An overview of hot isostatic pressing, J. Mater. Process. Technol., 30(1992), No. 1, p. 45. doi: 10.1016/0924-0136(92)90038-T
|
[6] |
C. Cai, X.Y. Gao, Q. Teng, R. Kiran, J. Liu, Q.S. Wei, and Y.S. Shi, Hot isostatic pressing of a near α-Ti alloy: Temperature optimization, microstructural evolution and mechanical performance evaluation, Mater. Sci. Eng. A, 802(2021), art. No. 140426. doi: 10.1016/j.msea.2020.140426
|
[7] |
H.V. Atkinson and S. Davies, Fundamental aspects of hot isostatic pressing: An overview, Metall. Mater. Trans. A, 31(2000), No. 12, p. 2981. doi: 10.1007/s11661-000-0078-2
|
[8] |
F.L. Han, The PM HIP parts process and design guidelines, Powder Metall. Technol., 34(2016), No. 1, p. 62.
|
[9] |
C.G. Hjorth, HIP powder metal near-net shapes for demanding environment and applications, J. Iron Steel Res. Int., 14(2007), No. 5, p. 121. doi: 10.1016/S1006-706X(08)60064-3
|
[10] |
L.M. Tan, Y.P. Li, F. Liu, Y. Nie, and L. Jiang, Superplastic behavior of a powder metallurgy superalloy during isothermal compression, J. Mater. Sci. Technol., 35(2019), No. 11, p. 2591. doi: 10.1016/j.jmst.2019.05.025
|
[11] |
Y. Wu, P.J. Xue, Q.S. Wei, and Y.S. Shi, Near-net-shaping hot isostatic pressing of Ti6Al4V alloys monolithic bladed disks, Rare Met. Mater. Eng., 44(2015), No. 2, p. 360.
|
[12] |
C.L. Qiu, M.M. Attallah, X.H. Wu, and P. Andrews, Influence of hot isostatic pressing temperature on microstructure and tensile properties of a nickel-based superalloy powder, Mater. Sci. Eng. A, 564(2013), p. 176. doi: 10.1016/j.msea.2012.11.084
|
[13] |
C. Broeckmann, Hot isostatic pressing of near net shape components - Process fundamentals and future challenges, Powder Metall., 55(2012), No. 3, p. 176. doi: 10.1179/0032589912Z.00000000063
|
[14] |
G. Aryanpour, S. Mashl, and V. Warke, Elastoplastic–viscoplastic modelling of metal powder compaction: Application to hot isostatic pressing, Powder Metall., 56(2013), No. 1, p. 14. doi: 10.1179/1743290112Y.0000000027
|
[15] |
S. Shima and M. Oyane, Plasticity theory for porous metals, Int. J. Mech. Sci., 18(1976), No. 6, p. 285. doi: 10.1016/0020-7403(76)90030-8
|
[16] |
Y. Zhang and F.Z. Wang, Numerical simulation of effects of pressure on densification of hot isostatic pressing of CuCr25 powder, Hot Work. Technol., 47(2018), No. 2, p. 76.
|
[17] |
Z.Q. Hou, Y.S. Shi, G.C. Liu, J.W. Wang, and Q.S. Wei, Investigation can’s deformation and densification for stainless steel powders during hot isostatic pressing, J. Mater. Metall., 10(2011), No. 2, p. 136.
|
[18] |
R.P. Guo, L. Xu, J. Wu, Z.G. Lu, and R. Yang, Simulation of container design for powder metallurgy titanium components through hot-isostatic-pressing, Mater. Sci. Forum, 817(2015), p. 610. doi: 10.4028/www.scientific.net/MSF.817.610
|
[19] |
L.H. Lang, G. Wang, X.N. Huang, S. Yu, W. Duan, and Q.Y. Xu, Shielding effect of capsules and its impact on mechanical properties of P/M aluminium alloys fabricated by hot isostatic pressing, Chin. J. Nonferrous Met., 26(2016), No. 2, p. 261.
|
[20] |
Y.J. Yin, P. Zhang, J.X. Zhou, and Y.S. Shi, Correction on Shima yield criterion for Ti6Al4V powder HIP process, J. Huazhong Univ. Sci. Technol., 46(2018), No. 6, p. 14.
|
[21] |
L.H. Lang, G.L. Bu, Y. Xue, and D.X. Zhang, Determine key parameters of simulation constitutive and process optimization for titanium alloy (Ti–6Al–4V) hot isostatic pressing, J. Plast. Eng., 18(2011), No. 4, p. 34.
|
[22] |
G.C. Liu, Y.S. Shi, Q.S. Wei, and J.W. Wang, Finite element analysis of pressure influence on densification of titanium alloy powder under hot isostatic pressing, Key Eng. Mater., 450(2010), p. 206. doi: 10.4028/www.scientific.net/KEM.450.206
|
[23] |
Z.H. Qu, J.T. Liu, G.X. Zhang, Y.W. Zhang, and Y. Tao, Numerical simulation of hot isostatic pressing process of FGH4097 superalloy, Trans. Mater. Heat Treat., 38(2017), No. 7, p. 173.
|
[24] |
A. Nohara, T. Nakagawa, T. Soh, and T. Shinke, Numerical simulation of the densification behaviour of metal powder during hot isostatic pressing, Int. J. Numer. Methods Eng., 25(1988), No. 1, p. 213. doi: 10.1002/nme.1620250117
|
[25] |
B. Fang, G.F. Tian, Z. Ji, M.Y. Wang, C.C. Jia, and S.W. Yang, Study on the thermal deformation behavior and microstructure of FGH96 heat extrusion alloy during two-pass hot deformation, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 657. doi: 10.1007/s12613-019-1774-0
|
[26] |
Y.F. Feng, X.M. Zhou, J.W. Zou, and G.F. Tian, Effect of cooling rate during quenching on the microstructure and creep property of nickel-based superalloy FGH96, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 493. doi: 10.1007/s12613-019-1756-2
|
[27] |
A. Svoboda, H.Å. Häggblad, and M. Näsström, Simulation of hot isostatic pressing of metal powder components to near net shape, Eng. Comput., 13(1996), No. 5, p. 13. doi: 10.1108/02644409610120713
|
[28] |
H.H. Chen, Mac Finite Element Example Analysis Tutorial, China Machine Press, Beijing, 2002.
|
[29] |
V. Samarov, D. Seliverstov, and F.H. (Sam) Froes, Fabrication of near-net-shape cost-effective titanium components by use of prealloyed powders and hot isostatic pressing, [in] M. Qian and F.H. (Sam) Froes, eds., Titanium Powder Metallurgy: Science, Technology and Applications, Butterworth-Heinemann, Waltham, 2015, p. 313.
|
[30] |
H. ElRakayby, H. Kim, S. Hong, and K. Kim, An investigation of densification behavior of nickel alloy powder during hot isostatic pressing, Adv. Powder Technol., 26(2015), No. 5, p. 1314. doi: 10.1016/j.apt.2015.07.005
|
[31] |
C. Cai, X. Wu, W. Liu, W. Zhu, H. Chen, J.C.D. Qiu, C.N. Sun, J. Liu, Q.S. Wei, and Y.S. Shi, Selective laser melting of near-α titanium alloy Ti–6Al–2Zr–1Mo–1V: Parameter optimization, heat treatment and mechanical performance, J. Mater. Sci. Technol., 57(2020), p. 51. doi: 10.1016/j.jmst.2020.05.004
|
[32] |
C.Z. Lin, Stress analysis of a cylinder under uniform radial pressure, Mech. Eng., 2(1988), p. 52.
|
[33] |
P. Dong, An analysis of the shielding effect of container on isocratic pressing, Met. Form. Technol., 20(2002), No. 3, p. 12.
|