Zhongbao Que, Liang Chu, Shuaibo Zhai, Yifei Feng, Chen Chen, Wei Liu, Ruiyuan Hu, Jing Hu, and Xing’ao Li, Self-assembled TiO2 hole-blocking layers for efficient perovskite solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1280-1285. https://doi.org/10.1007/s12613-021-2361-8
Cite this article as:
Zhongbao Que, Liang Chu, Shuaibo Zhai, Yifei Feng, Chen Chen, Wei Liu, Ruiyuan Hu, Jing Hu, and Xing’ao Li, Self-assembled TiO2 hole-blocking layers for efficient perovskite solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1280-1285. https://doi.org/10.1007/s12613-021-2361-8
Research Article

Self-assembled TiO2 hole-blocking layers for efficient perovskite solar cells

+ Author Affiliations
  • Corresponding author:

    Liang Chu    E-mail: chuliang@njupt.edu.cn

  • Received: 1 August 2021Revised: 29 September 2021Accepted: 30 September 2021Available online: 1 October 2021
  • The self-assembly process for compatible functional layers of devices is a simple, feasible, and energy-saving strategy. In mesoporous perovskite solar cells (PSCs), compact and scaffold TiO2 films generally function as the hole-blocking and electron-transporting layers, respectively. However, both of these layers are usually generated through a high-temperature annealing process. Here, we deposited TiO2 compact films through a room-temperature self-assembly process as effective hole-blocking layers for PSCs. The thickness of TiO2 compact films can be easily controlled by the deposition time. Through the optimization of TiO2 compact films (80 nm), the power conversion efficiency (PCE) of mesoporous PSCs without and with hole conductor layers increases up to 10.66% and 17.95%, respectively. Notably, an all-low-temperature planar PSC with the self-assembled TiO2 layer exhibits a PCE of 16.41%.
  • loading
  • [1]
    A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131(2009), No. 17, p. 6050. doi: 10.1021/ja809598r
    [2]
    L. Chu and L.M. Ding, Self-assembled monolayers in perovskite solar cells, J. Semicond., 42(2021), No. 9, art. No. 090202. doi: 10.1088/1674-4926/42/9/090202
    [3]
    L. Chu, Pseudohalide anion engineering for highly efficient and stable perovskite solar cells, Matter, 4(2021), No. 6, p. 1762. doi: 10.1016/j.matt.2021.05.007
    [4]
    J. Yang, L. Chu, R.Y. Hu, W. Liu, N.J. Liu, Y.H. Ma, W. Ahmad, and X.A. Li, Work function engineering to enhance open-circuit voltage in planar perovskite solar cells by g-C3N4 nanosheets, Nano Res., 14(2021), No. 7, p. 2139. doi: 10.1007/s12274-021-3408-x
    [5]
    X.C. Zhang, Strain control for halide perovskites, Matter, 2(2020), No. 2, p. 294. doi: 10.1016/j.matt.2020.01.010
    [6]
    National Renewable Energy Laboratory, Best Research Cell Efficiency [2020-09-19]. https://www.nrel.gov/pv/cell-efficiency.html.
    [7]
    W.E.I. Sha, H. Zhang, Z.S. Wang, H.L. Zhu, X.G. Ren, F. Lin, A.K.Y. Jen, and W.C.H. Choy, Quantifying efficiency loss of perovskite solar cells by a modified detailed balance model, Adv. Energy Mater., 8(2018), No. 8, art. No. 1701586. doi: 10.1002/aenm.201701586
    [8]
    M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, and H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 338(2012), No. 6107, p. 643. doi: 10.1126/science.1228604
    [9]
    G.C. Xing, N. Mathews, S.Y. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, and T.C. Sum, Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3, Science, 342(2013), No. 6156, p. 344. doi: 10.1126/science.1243167
    [10]
    S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 342(2013), No. 6156, p. 341. doi: 10.1126/science.1243982
    [11]
    P.F. Fu, S. Hu, J. Tang, and Z.W. Xiao, Material exploration via designing spatial arrangement of octahedral units: A case study of lead halide perovskites, Front. Optoelectron., 14(2021), No. 2, p. 252. doi: 10.1007/s12200-021-1227-z
    [12]
    J.H. Zheng, L.X. Zhu, Z.T. Shen, F.M. Li, L.Y. Ling, H.L. Li, and C. Chen, Effects of the incorporation amounts of CdS and Cd(SCN2H4)2Cl2 on the performance of perovskite solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 283. doi: 10.1007/s12613-021-2316-0
    [13]
    Y. Xie, J. Yin, J. Zheng, Y. Fan, J. Wu, and X. Zhang, Facile RbBr interface modification improves perovskite solar cell efficiency, Mater. Today Chem., 14(2019), art. No. 100179. doi: 10.1016/j.mtchem.2019.07.001
    [14]
    W. Liu, N.J. Liu, S.L. Ji, H.F. Hua, Y.H. Ma, R.Y. Hu, J. Zhang, L. Chu, X.A. Li, and W. Huang, Perfection of perovskite grain boundary passivation by rhodium incorporation for efficient and stable solar cells, Nano Micro Lett., 12(2020), No. 1, art. No. 119. doi: 10.1007/s40820-020-00457-7
    [15]
    J. Wang, M.C. Qin, H. Tao, W.J. Ke, Z. Chen, J.W. Wan, P.L. Qin, L.B. Xiong, H.W. Lei, H.Q. Yu, and G.J. Fang, Performance enhancement of perovskite solar cells with Mg-doped TiO2 compact film as the hole-blocking layer, Appl. Phys. Lett., 106(2015), No. 12, art. No. 121104. doi: 10.1063/1.4916345
    [16]
    J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, and M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499(2013), No. 7458, p. 316. doi: 10.1038/nature12340
    [17]
    T.S. Su, T.Y. Hsieh, C.Y. Hong, and T.C. Wei, Electrodeposited ultrathin TiO2 blocking layers for efficient perovskite solar cells, Sci. Rep., 5(2015), art. No. 16098. doi: 10.1038/srep16098
    [18]
    W.J. Ke, G.J. Fang, J. Wang, P.L. Qin, H. Tao, H.W. Lei, Q. Liu, X. Dai, and X.Z. Zhao, Perovskite solar cell with an efficient TiO2 compact film, ACS Appl. Mater. Interfaces, 6(2014), No. 18, p. 15959. doi: 10.1021/am503728d
    [19]
    F. Di Giacomo, V. Zardetto, A. D'Epifanio, S. Pescetelli, F. Matteocci, S. Razza, A. Di Carlo, S. Licoccia, W.M.M. Kessels, M. Creatore, and T.M. Brown, Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV-irradiated TiO2 scaffolds on plastic substrates, Adv. Energy Mater., 5(2015), No. 8, art. No. 1401808. doi: 10.1002/aenm.201401808
    [20]
    S. Aharon, S. Gamliel, B. El Cohen, and L. Etgar, Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells, Phys. Chem. Chem. Phys., 16(2014), No. 22, p. 10512. doi: 10.1039/C4CP00460D
    [21]
    Y.T. Fang, S.B. Zhai, L. Chu, and J.S. Zhong, Advances in halide perovskite memristor from lead-based to lead-free materials, ACS Appl. Mater. Interfaces, 13(2021), No. 15, p. 17141. doi: 10.1021/acsami.1c03433
    [22]
    K. Domanski, J.P. Correa-Baena, N. Mine, M.K. Nazeeruddin, A. Abate, M. Saliba, W. Tress, A. Hagfeldt, and M. Grätzel, Not all that glitters is gold: Metal-migration-induced degradation in perovskite solar cells, ACS Nano, 10(2016), No. 6, p. 6306. doi: 10.1021/acsnano.6b02613
    [23]
    A.Y. Mei, X. Li, L.F. Liu, Z.L. Ku, T.F. Liu, Y.G. Rong, M. Xu, M. Hu, J.Z. Chen, Y. Yang, M. Grätzel, and H.W. Han, A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability, Science, 345(2014), No. 6194, p. 295. doi: 10.1126/science.1254763
    [24]
    H. Hu, B.H. Dong, H.T. Hu, F.X. Chen, M.Q. Kong, Q.P. Zhang, T.Y. Luo, L. Zhao, Z.G. Guo, J. Li, Z.X. Xu, S.M. Wang, D. Eder, and L. Wan, Atomic layer deposition of TiO2 for a high-efficiency hole-blocking layer in hole-conductor-free perovskite solar cells processed in ambient air, ACS Appl. Mater. Interfaces, 8(2016), No. 28, p. 17999. doi: 10.1021/acsami.6b02701
    [25]
    L. Chu, W. Liu, Z.F. Qin, R. Zhang, R.Y. Hu, J. Yang, J.P. Yang, and X.A. Li, Boosting efficiency of hole conductor-free perovskite solar cells by incorporating p-type NiO nanoparticles into carbon electrodes, Sol. Energy Mater. Sol. Cells, 178(2018), p. 164. doi: 10.1016/j.solmat.2018.01.010
    [26]
    J.Y. Du, M.Q. Zhang, and J.J. Tian, Controlled crystal orientation of two-dimensional Ruddlesden-Popper halide perovskite films for solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 49. doi: 10.1007/s12613-021-2341-z
    [27]
    H.Y. Zhang, R. Li, W.W. Liu, M. Zhang, and M. Guo, Research progress in lead-less or lead-free three-dimensional perovskite absorber materials for solar cells, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 387. doi: 10.1007/s12613-019-1748-2
    [28]
    J.H. Lee, I.C. Leu, M.C. Hsu, Y.W. Chung, and M.H. Hon, Fabrication of aligned TiO2 one-dimensional nanostructured arrays using a one-step templating solution approach, J. Phys. Chem. B, 109(2005), No. 27, p. 13056. doi: 10.1021/jp052203l
    [29]
    C.K. Xu, J.M. Wu, U.V. Desai, and D. Gao, High-efficiency solid-state dye-sensitized solar cells based on TiO2-coated ZnO nanowire arrays, Nano Lett., 12(2012), No. 5, p. 2420. doi: 10.1021/nl3004144
    [30]
    B. Erdem, R.A. Hunsicker, G.W. Simmons, E.D. Sudol, V.L. Dimonie, and M.S. El-Aasser, XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation, Langmuir, 17(2001), No. 9, p. 2664. doi: 10.1021/la0015213
    [31]
    A. Orendorz, J. Wüsten, C. Ziegler, and H. Gnaser, Photoelectron spectroscopy of nanocrystalline anatase TiO2 films, Appl. Surf. Sci., 252(2005), No. 1, p. 85. doi: 10.1016/j.apsusc.2005.02.002
    [32]
    E. McCafferty and J.P. Wightman, Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method, Surf. Interface Anal., 26(1998), No. 8, p. 549. doi: 10.1002/(SICI)1096-9918(199807)26:8<549::AID-SIA396>3.0.CO;2-Q
    [33]
    K. Cao, Z.X. Zuo, J. Cui, Y. Shen, T. Moehl, S.M. Zakeeruddin, M. Grätzel, and M.K. Wang, Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture, Nano Energy, 17(2015), p. 171. doi: 10.1016/j.nanoen.2015.08.009
    [34]
    N.J. Liu, L. Chu, W. Ahmad, R.Y. Hu, R.F. Luan, W. Liu, J. Yang, Y.H. Ma, and X.A. Li, Low-pressure treatment of CuSCN hole transport layers for enhanced carbon-based perovskite solar cells, J. Power Sources, 499(2021), art. No. 229970. doi: 10.1016/j.jpowsour.2021.229970
    [35]
    Y.Z. Wu, X.D. Yang, H. Chen, K. Zhang, C.J. Qin, J. Liu, W.Q. Peng, A. Islam, E.B. Bi, F. Ye, M.S. Yin, P. Zhang, and L.Y. Han, Highly TiO2 compact films for efficient hole-blocking in perovskite solar cells, Appl. Phys. Express, 7(2014), No. 5, art. No. 052301. doi: 10.7567/APEX.7.052301
    [36]
    P.J. Wang, Z.P. Shao, M. Ulfa, and T. Pauporté, Insights into the hole blocking layer effect on the perovskite solar cell performance and impedance response, J. Phys. Chem. C, 121(2017), No. 17, p. 9131. doi: 10.1021/acs.jpcc.7b00979
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(1005) PDF Downloads(19) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return