Fangyi Zhao, Zhen Song,  and Quanlin Liu, Novel Cr3+-activated far-red emitting phosphors with β-Ca3(PO4)2-type structure for indoor plant cultivation, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1286-1294. https://doi.org/10.1007/s12613-021-2363-6
Cite this article as:
Fangyi Zhao, Zhen Song,  and Quanlin Liu, Novel Cr3+-activated far-red emitting phosphors with β-Ca3(PO4)2-type structure for indoor plant cultivation, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1286-1294. https://doi.org/10.1007/s12613-021-2363-6
Research Article

Novel Cr3+-activated far-red emitting phosphors with β-Ca3(PO4)2-type structure for indoor plant cultivation

+ Author Affiliations
  • Corresponding authors:

    Zhen Song    E-mail: zsong@ustb.edu.cn

    Quanlin Liu    E-mail: qlliu@ustb.edu.cn

  • Received: 24 June 2021Revised: 8 October 2021Accepted: 9 October 2021Available online: 12 October 2021
  • Cr3+-activated far-red and near-infrared phosphors have drawn considerable attention owing to their adjustable emission wavelengths and wide applications. Herein, we reported a series of Cr3+-doped phosphors with β-Ca3(PO4)2-type structure, of which Ca9Ga(PO4)7:Cr3+ possessed the highest far-red emission intensity. At an excitation of 440 nm, the Ca9Ga(PO4)7:Cr3+ phosphors exhibited a broad emission band ranging from 650 to 850 nm and peaking at 735 nm, and the broadband superimposed two sharp lines centering at 690 and 698 nm. The optimal sample Ca9Ga0.97(PO4)7:0.03Cr3+ had an internal quantum efficiency of 55.7%. The luminescence intensity of the Ca9Ga0.97(PO4)7:0.03Cr3+ phosphor obtained at 423 K could maintain 68.5% of that at room temperature, demonstrating its outstanding luminescence thermal stability. A phosphor-conversion light-emitting diode was fabricated, indicating that the Ca9Ga(PO4)7:Cr3+ phosphor has potential applications in indoor plant cultivation.
  • loading
  • [1]
    S.Y. Wang, Q. Sun, B. Devakumar, L.L. Sun, J. Liang, and X.Y. Huang, Novel SrMg2La2W2O12:Mn4+ far-red phosphors with high quantum efficiency and thermal stability towards applications in indoor plant cultivation LEDs, RSC Adv., 8(2018), No. 53, p. 30191. doi: 10.1039/C8RA06134C
    [2]
    X.Y. Huang and H. Guo, Finding a novel highly efficient Mn4+-activated Ca3La2W2O12 far-red emitting phosphor with excellent responsiveness to phytochrome PFR: Towards indoor plant cultivation application, Dyes Pigm., 152(2018), p. 36. doi: 10.1016/j.dyepig.2018.01.022
    [3]
    R.P. Cao, Z.H. Shi, G.J. Quan, T. Chen, S.L. Guo, Z.F. Hu, and P. Liu, Preparation and luminescence properties of Li2MgZrO4: Mn4+ red phosphor for plant growth, J. Lumin., 188(2017), p. 577. doi: 10.1016/j.jlumin.2017.05.002
    [4]
    J. Liang, L.L. Sun, B. Devakumar, S.Y. Wang, Q. Sun, H. Guo, B. Li, and X.Y. Huang, Far-red-emitting double-perovskite CaLaMgSbO6:Mn4+ phosphors with high photoluminescence efficiency and thermal stability for indoor plant cultivation LEDs, RSC Adv., 8(2018), No. 55, p. 31666. doi: 10.1039/C8RA06708B
    [5]
    D. von Wettstein, S. Gough, and C.G. Kannangara, Chlorophyll biosynthesis, Plant Cell, 7(1995), No. 7, art. No. 1039. doi: 10.2307/3870056
    [6]
    G. Tamulaitis, P. Duchovskis, Z. Bliznikas, K. Breive, R. Ulinskaite, A. Brazaityte, A. Novičkovas, and A. Žukauskas, High-power light-emitting diode based facility for plant cultivation, J. Phys. D: Appl. Phys., 38(2005), No. 17, p. 3182. doi: 10.1088/0022-3727/38/17/S20
    [7]
    R.A. Sharrock, The phytochrome red/far-red photoreceptor superfamily, Genome Biol., 9(2008), No. 8, p. 230. doi: 10.1186/gb-2008-9-8-230
    [8]
    L. Li, Y.X. Pan, Y. Huang, S.M. Huang, and M.M. Wu, Dual-emissions with energy transfer from the phosphor Ca14Al10Zn6O35:Bi3+,Eu3+ for application in agricultural lighting, J. Alloys Compd., 724(2017), p. 735. doi: 10.1016/j.jallcom.2017.07.047
    [9]
    J.Y. Chen, C.F. Guo, Z. Yang, T. Li, and J. Zhao, Li2SrSiO4: Ce3+, Pr3+ phosphor with blue, red, and near-infrared emissions used for plant growth LED, J. Am. Ceram. Soc., 99(2016), No. 1, p. 218. doi: 10.1111/jace.13952
    [10]
    Z.L. Chen, K. Liu, X.Y. Yuan, and K.X. Chen, Luminescence properties of nitrogen-rich Ca-SiAlON:Eu2+ phosphors prepared by freeze-drying assisted combustion synthesis, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 687. doi: 10.1007/s12613-019-1934-2
    [11]
    F. Unal, F. Kaya, and K. Kazmanli, Synthesis, characterization and radioluminescence properties of erbium-doped yttria phosphors, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1983. doi: 10.1007/s12613-021-2269-3
    [12]
    J. Liang, L.L. Sun, B. Devakumar, S.Y. Wang, Q. Sun, H. Guo, B. Li, and X.Y. Huang, Novel Mn4+-activated LiLaMgWO6 far-red emitting phosphors: High photoluminescence efficiency, good thermal stability, and potential applications in plant cultivation LEDs, RSC Adv., 8(2018), No. 48, p. 27144. doi: 10.1039/C8RA05669B
    [13]
    K.A. Franklin and P.H. Quail, Phytochrome functions in Arabidopsis development, J. Exp. Bot., 61(2010), No. 1, p. 11. doi: 10.1093/jxb/erp304
    [14]
    L. Shi, S. Wang, Y.J. Han, Z.X. Ji, D. Ma, Z.F. Mu, Z.Y. Mao, D.J. Wang, Z.W. Zhang, and L. Liu, Sr2LaSbO6:Mn4+ far-red phosphor for plant cultivation: Synthesis, luminescence properties and emission enhancement by Al3+ ions, J. Lumin., 221(2020), art. No. 117091. doi: 10.1016/j.jlumin.2020.117091
    [15]
    Z.W. Zhou, J.M. Zheng, R. Shi, N.M. Zhang, J.Y. Chen, R.Y. Zhang, H. Suo, E.M. Goldys, and C.F. Guo, Ab initio site occupancy and far-red emission of Mn4+ in cubic-phase La(MgTi)1/2O3 for plant cultivation, ACS Appl. Mater. Interfaces, 9(2017), No. 7, p. 6177. doi: 10.1021/acsami.6b15866
    [16]
    K. Li, H.Z. Lian, R. van Deun, and M.G. Brik, A far-red-emitting NaMgLaTeO6:Mn4+ phosphor with perovskite structure for indoor plant growth, Dyes Pigm., 162(2019), p. 214. doi: 10.1016/j.dyepig.2018.09.084
    [17]
    K. Li and R. van Deun, Novel intense emission-tunable Li1.5La1.5WO6:Mn4+,Nd3+,Yb3+ material with good luminescence thermal stability for potential applications in c-Si solar cells and plant-cultivation far-red-NIR LEDs, ACS Sustainable Chem. Eng., 7(2019), No. 19, p. 16284. doi: 10.1021/acssuschemeng.9b03308
    [18]
    L. Shi, Y.J. Han, H.X. Wang, D.C. Shi, X.Y. Geng, and Z.W. Zhang, High-efficiency and thermally stable far-red emission of Mn4+ in double cubic perovskite Sr9Y2W4O24 for plant cultivation, J. Lumin., 208(2019), p. 307. doi: 10.1016/j.jlumin.2018.12.065
    [19]
    Y.J. Zheng, H.M. Zhang, H.R. Zhang, Z.G. Xia, Y.L. Liu, M.S. Molokeev, and B.F. Lei, Co-substitution in Ca1–xYxAl12–xMgxO19 phosphors: Local structure evolution, photoluminescence tuning and application for plant growth LEDs, J. Mater. Chem. C, 6(2018), No. 15, p. 4217. doi: 10.1039/C8TC00165K
    [20]
    B.B. Su, M.Z. Li, E.H. Song, and Z.G. Xia, Sb3+-doping in cesium zinc halides single crystals enabling high-efficiency near-infrared emission, Adv. Funct. Mater., 31(2021), No. 40, art. No. 2105316. doi: 10.1002/adfm.202105316
    [21]
    J.W. Qiao, G.J. Zhou, Y.Y. Zhou, Q.Y. Zhang, and Z.G. Xia, Divalent europium-doped near-infrared-emitting phosphor for light-emitting diodes, Nat. Commun., 10(2019), art. No. 5267. doi: 10.1038/s41467-019-13293-0
    [22]
    M.H. Fang, G.N.A. de Guzman, Z. Bao, N. Majewska, S. Mahlik, M. Grinberg, G. Leniec, S.M. Kaczmarek, C.W. Yang, K.M. Lu, H.S. Sheu, S.F. Hu, and R.S. Liu, Ultra-high-efficiency near-infrared Ga2O3:Cr3+ phosphor and controlling of phytochrome, J. Mater. Chem. C, 8(2020), No. 32, p. 11013. doi: 10.1039/D0TC02705G
    [23]
    S.Q. Liu, Z.Z. Wang, H. Cai, Z. Song, and Q.L. Liu, Highly efficient near-infrared phosphor LaMgGa11O19:Cr3+, Inorg. Chem. Front., 7(2020), No. 6, p. 1467. doi: 10.1039/D0QI00063A
    [24]
    D.C. Huang, H.M. Zhu, Z.H. Deng, H.Y. Yang, J. Hu, S.S. Liang, D.J. Chen, E. Ma, and W. Guo, A highly efficient and thermally stable broadband Cr3+-activated double borate phosphor for near-infrared light-emitting diodes, J. Mater. Chem. C, 9(2021), No. 1, p. 164. doi: 10.1039/D0TC04803H
    [25]
    L.Q. Yao, Q.Y. Shao, S.Y. Han, C. Liang, J.H. He, and J.Q. Jiang, Enhancing near-infrared photoluminescence intensity and spectral properties in Yb3+ codoped LiScP2O7:Cr3+, Chem. Mater., 32(2020), No. 6, p. 2430.[LinkOut]. doi: 10.1021/acs.chemmater.9b04934
    [26]
    J. Zhou, Z.G. Xia, X. Li, X.Y. Yun, J.Y. Sun, and D.H. Xu, A novel near-infrared LiGaW2O8:Yb3+,Cr3+ up-conversion phosphor with enhanced luminescence intensity based on Ho3+/Er3+ bridges, J. Mater. Chem. C, 8(2020), No. 35, p. 12189. doi: 10.1039/D0TC02963G
    [27]
    H.T. Zeng, T.L. Zhou, L. Wang, and R.J. Xie, Two-site occupation for exploring ultra-broadband near-infrared phosphor—double-perovskite La2MgZrO6:Cr3+, Chem. Mater., 31(2019), No. 14, p. 5245. doi: 10.1021/acs.chemmater.9b01587
    [28]
    X.F. Zhou, W.Y. Geng, J.Y. Li, Y.C. Wang, J.Y. Ding, and Y.H. Wang, An ultraviolet–visible and near-infrared-responded broadband NIR phosphor and its NIR spectroscopy application, Adv. Opt. Mater., 8(2020), No. 8, art. No. 1902003. doi: 10.1002/adom.201902003
    [29]
    X.X. Xu, Q.Y. Shao, L.Q. Yao, Y. Dong, and J.Q. Jiang, Highly efficient and thermally stable Cr3+-activated silicate phosphors for broadband near-infrared LED applications, Chem. Eng. J., 383(2020), art. No. 123108. doi: 10.1016/j.cej.2019.123108
    [30]
    T.Y. Liu, H. Cai, N. Mao, Z. Song, and Q.L. Liu, Efficient near-infrared pyroxene phosphor LiInGe2O6:Cr3+ for NIR spectroscopy application, J. Am. Ceram. Soc., 104(2021), No. 9, p. 4577. doi: 10.1111/jace.17856
    [31]
    L.L. Zhang, S. Zhang, Z.D. Hao, X. Zhang, G.H. Pan, Y.S. Luo, H.J. Wu, and J.H. Zhang, A high efficiency broad-band near-infrared Ca2LuZr2Al3O12:Cr3+ garnet phosphor for blue LED chips, J. Mater. Chem. C, 6(2018), No. 18, p. 4967. doi: 10.1039/C8TC01216D
    [32]
    H. Cai, S.Q. Liu, Z. Song, and Q.L. Liu, Tuning luminescence from NIR-I to NIR-II in Cr3+-doped olivine phosphors for nondestructive analysis, J. Mater. Chem. C, 9(2021), No. 16, p. 5469. doi: 10.1039/D1TC00521A
    [33]
    F.Y. Zhao, Z. Song, J. Zhao, and Q.L. Liu, Double perovskite Cs2AgInCl6:Cr3+: Broadband and near-infrared luminescent materials, Inorg. Chem. Front., 6(2019), No. 12, p. 3621. doi: 10.1039/C9QI00905A
    [34]
    F.Y. Zhao, H. Cai, Z. Song, and Q.L. Liu, Structural confinement for Cr3+ activators toward efficient near-infrared phosphors with suppressed concentration quenching, Chem. Mater., 33(2021), No. 10, p. 3621. doi: 10.1021/acs.chemmater.1c00441
    [35]
    X.Q. Zhou, J.W. Qiao, and Z.G. Xia, Learning from mineral structures toward new luminescence materials for light-emitting diode applications, Chem. Mater., 33(2021), No. 4, p. 1083. doi: 10.1021/acs.chemmater.1c00032
    [36]
    T. Roisnel and J. Rodríquez-Carvajal, WinPLOTR: A windows tool for powder diffraction pattern analysis, Mater. Sci. Forum, 378-381(2001), p. 118. doi: 10.4028/www.scientific.net/MSF.378-381.118
    [37]
    M.Y. Chen, Z.G. Xia, M.S. Molokeev, T. Wang, and Q.L. Liu, Tuning of photoluminescence and local structures of substituted cations in xSr2Ca(PO4)2–(1−x)Ca10Li(PO4)7:Eu2+ phosphors, Chem. Mater., 29(2017), No. 3, p. 1430. doi: 10.1021/acs.chemmater.7b00006
    [38]
    M. Yashima, A. Sakai, T. Kamiyama, and A. Hoshikawa, Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction, J. Solid State Chem., 175(2003), No. 2, p. 272. doi: 10.1016/S0022-4596(03)00279-2
    [39]
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A, 32(1976), No. 5, p. 751. doi: 10.1107/S0567739476001551
    [40]
    X.J. Kang, C.Y. Jia, H.C. Wang, Y.S. Xiao, and W. Lü, Structural, tunable emission and energy transfer of Ca9In(PO4)7:Ce3+, Tb3+/Dy3+ phosphors, Mater. Chem. Phys., 240(2020), art. No. 122239. doi: 10.1016/j.matchemphys.2019.122239
    [41]
    J. Zhou, X.M. Rong, P. Zhang, M.S. Molokeev, P.J. Wei, Q.L. Liu, X.W. Zhang, and Z.G. Xia, Manipulation of Bi3+/In3+ transmutation and Mn2+-doping effect on the structure and optical properties of double perovskite Cs2NaBi1−xInxCl6, Adv. Opt. Mater., 7(2019), No. 8, art. No. 1801435. doi: 10.1002/adom.201801435
    [42]
    B. Malysa, A. Meijerink, and T. Jüstel, Temperature dependent Cr3+ photoluminescence in garnets of the type X3Sc2Ga3O12 (X = Lu, Y, Gd, La), J. Lumin., 202(2018), p. 523. doi: 10.1016/j.jlumin.2018.05.076
    [43]
    G.N.A. de Guzman, V. Rajendran, Z. Bao, et al., Multi-site cation control of ultra-broadband near-infrared phosphors for application in light-emitting diodes, Inorg. Chem., 59(2020), No. 20, p. 15101. doi: 10.1021/acs.inorgchem.0c02055
    [44]
    E.T. Basore, W.G. Xiao, X.F. Liu, J.H. Wu, and J.R. Qiu, Broadband near-infrared garnet phosphors with near-unity internal quantum efficiency, Adv. Opt. Mater., 8(2020), No. 12, art. No. 2000296. doi: 10.1002/adom.202000296
    [45]
    A. Zabiliūtė, S. Butkutė, A. Žukauskas, P. Vitta, and A. Kareiva, Sol–gel synthesized far-red chromium-doped garnet phosphors for phosphor-conversion light-emitting diodes that meet the photomorphogenetic needs of plants, Appl. Opt., 53(2014), No. 5, art. No. 907. doi: 10.1364/AO.53.000907
    [46]
    S.Q. Liu, H. Cai, S.Y. Zhang, Z. Song, Z.G. Xia, and Q.L. Liu, Site engineering strategy toward enhanced luminescence thermostability of a Cr3+-doped broadband NIR phosphor and its application, Mater. Chem. Front., 5(2021), No. 10, p. 3841. doi: 10.1039/D1QM00074H
    [47]
    N. Mao, S.Q. Liu, Z. Song, Y. Yu, and Q.L. Liu, A broadband near-infrared phosphor Ca3Y2Ge3O12:Cr3+ with garnet structure, J. Alloys Compd., 863(2021), art. No. 158699. doi: 10.1016/j.jallcom.2021.158699
    [48]
    B. Henderson and G.F. Imbusch, Optical Spectroscopy of Inorganic Solids, Oxford University Press, New York, 1989, p. 410.
    [49]
    M. Zhao, S.Q. Liu, H. Cai, F.Y. Zhao, Z. Song, and Q.L. Liu, Efficient broadband near-infrared phosphor Sr2ScSbO6:Cr3+ for solar-like lighting, China Mater, (2021). DOI: 10.1007/s40843-021-1785-6
    [50]
    A. Trueba, J.M. García-Lastra, P. Garcia-Fernandez, J.A. Aramburu, M.T. Barriuso, and M. Moreno, Cr3+-doped fluorides and oxides: Role of internal fields and limitations of the Tanabe–Sugano approach, J. Phys. Chem. A, 115(2011), No. 46, p. 13399. doi: 10.1021/jp207249w
    [51]
    B. Malysa, A. Meijerink, and T. Jüstel, Temperature dependent photoluminescence of Cr3+ doped Sr8MgLa(PO4)7, Opt. Mater., 85(2018), p. 341. doi: 10.1016/j.optmat.2018.09.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(3644) PDF Downloads(140) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return