Hui Dang, Zhidong Chang, Hualei Zhou, Sihang Ma, Min Li,  and Jialing Xiang, Extraction of lithium from the simulated pyrometallurgical slag of spent lithium-ion batteries by binary eutectic molten carbonates, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp. 1715-1721. https://doi.org/10.1007/s12613-021-2366-3
Cite this article as:
Hui Dang, Zhidong Chang, Hualei Zhou, Sihang Ma, Min Li,  and Jialing Xiang, Extraction of lithium from the simulated pyrometallurgical slag of spent lithium-ion batteries by binary eutectic molten carbonates, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp. 1715-1721. https://doi.org/10.1007/s12613-021-2366-3
Research Article

Extraction of lithium from the simulated pyrometallurgical slag of spent lithium-ion batteries by binary eutectic molten carbonates

+ Author Affiliations
  • Corresponding authors:

    Zhidong Chang    E-mail: zdchang@ustb.edu.cn

    Hualei Zhou    E-mail: hlzhou@ustb.edu.cn

  • Received: 11 June 2021Revised: 13 October 2021Accepted: 15 October 2021Available online: 16 October 2021
  • The effective and low-temperature extraction of lithium from the pyrometallurgical slag of spent lithium-ion batteries (LIBs) remains a great challenge. Herein, potassium carbonate/sodium carbonate (K2CO3/Na2CO3), which could form a eutectic molten salt system at 720°C, was used as a roasting agent to extract lithium from pyrometallurgical slag. Lithium was successfully extracted from the slag by K2CO3/Na2CO3 roasting followed by water leaching. Theoretical calculation results indicate that the lengths of Li–O bonds increase after K+/Na+ adsorption, resulting in the easy release of Li+ from the LiAlSi2O6 lattice after roasting with K2CO3/Na2CO3. Thermogravimetry–differential scanning calorimetry results indicate that the eutectic phenomenon of K2CO3 and Na2CO3 could be observed at 720°C and that the reaction of the slag and eutectic molten salts occurs at temperatures above 720°C. X-ray diffraction results suggest that Li+ in the slag is exchanged by K+ in K2CO3 with the concurrent formation of KAlSiO4, while Na2CO3 mainly functions as a fluxing agent. The lithium extraction efficiency can reach 93.87% under the optimal conditions of a roasting temperature of 740°C, roasting time of 30 min, leaching temperature of 50°C, leaching time of 40 min, and water/roasted sample mass ratio of 10:1. This work provides a new system for extracting lithium from the pyrometallurgical slag of spent LIBs.
  • loading
  • Supplementary Information s12613-021-2366-3.docx
  • [1]
    J.F. Xiao, J. Li, and Z.M. Xu, Challenges to future development of spent lithium ion batteries recovery from environmental and technological perspectives, Environ. Sci. Technol., 54(2020), No. 1, p. 9. doi: 10.1021/acs.est.9b03725
    [2]
    E.S. Fan, L. Li, Z.P. Wang, J. Lin, Y.X. Huang, Y. Yao, R.J. Chen, and F. Wu, Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects, Chem. Rev., 120(2020), No. 14, p. 7020. doi: 10.1021/acs.chemrev.9b00535
    [3]
    Z. Sun, H. Cao, Y.P. Xiao, J. Sietsma, W. Jin, H. Agterhuis, and Y.X. Yang, Toward sustainability for recovery of critical metals from electronic waste: The hydrochemistry processes, ACS Sustainable Chem. Eng., 5(2017), No. 1, p. 21. doi: 10.1021/acssuschemeng.6b00841
    [4]
    T. Fujita, H. Chen, K.T. Wang, C.L. He, Y.B. Wang, G. Dodbiba, and Y.Z. Wei, Reduction, reuse and recycle of spent Li-ion batteries for automobiles: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 179. doi: 10.1007/s12613-020-2127-8
    [5]
    E. Mossali, N. Picone, L. Gentilini, O. Rodrìguez, J.M. Pérez, and M. Colledani, Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments, J. Environ. Manage., 264(2020), art. No. 110500. doi: 10.1016/j.jenvman.2020.110500
    [6]
    A. Manthiram, A reflection on lithium-ion battery cathode chemistry, Nat. Commun., 11(2020), art. No. 1550. doi: 10.1038/s41467-020-15355-0
    [7]
    R.H. Wang, W.S. Cui, F.L. Chu, and F.X. Wu, Lithium metal anodes: Present and future, J. Energy Chem., 48(2020), p. 145. doi: 10.1016/j.jechem.2019.12.024
    [8]
    W.J. Kwak, Rosy, D. Sharon, C. Xia, H. Kim, L.R. Johnson, P.G. Bruce, L.F. Nazar, Y.K. Sun, A.A. Frimer, M. Noked, S.A. Freunberger, and D. Aurbach, Lithium–oxygen batteries and related systems: Potential, status, and future, Chem. Rev., 120(2020), No. 14, p. 6626. doi: 10.1021/acs.chemrev.9b00609
    [9]
    L.Y. Sun, B.R. Liu, T. Wu, G.G. Wang, Q. Huang, Y.F. Su, and F. Wu, Hydrometallurgical recycling of valuable metals from spent lithium-ion batteries by reductive leaching with stannous chloride, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 991. doi: 10.1007/s12613-020-2115-z
    [10]
    X.P. Chen, D.Z. Kang, J.Z. Li, T. Zhou, and H.R. Ma, Gradient and facile extraction of valuable metals from spent lithium ion batteries for new cathode materials re-fabrication, J. Hazard. Mater., 389(2020), art. No. 121887. doi: 10.1016/j.jhazmat.2019.121887
    [11]
    X.P. Fan, C.H. Song, X.F. Lu, Y. Shi, S.L. Yang, F.H. Zheng, Y.G. Huang, K. Liu, H.Q. Wang, and Q.Y. Li, Separation and recovery of valuable metals from spent lithium-ion batteries via concentrated sulfuric acid leaching and regeneration of LiNi1/3Co1/3Mn1/3O2, J. Alloys Compd., 863(2021), art. No. 158775. doi: 10.1016/j.jallcom.2021.158775
    [12]
    S.X. Yan, C.H. Sun, T. Zhou, R.C. Gao, and H.S. Xie, Ultrasonic-assisted leaching of valuable metals from spent lithium-ion batteries using organic additives, Sep. Purif. Technol., 257(2021), art. No. 117930. doi: 10.1016/j.seppur.2020.117930
    [13]
    S.Y. Zhou, Y.J. Zhang, Q. Meng, P. Dong, Z.T. Fei, and Q.X. Li, Recycling of LiCoO2 cathode material from spent lithium ion batteries by ultrasonic enhanced leaching and one-step regeneration, J. Environ. Manage., 277(2021), art. No. 111426. doi: 10.1016/j.jenvman.2020.111426
    [14]
    S.Y. Lei, Y. Cao, X.F. Cao, W. Sun, Y.Q. Weng, and Y. Yang, Separation of lithium and transition metals from leachate of spent lithium-ion batteries by solvent extraction method with Versatic 10, Sep. Purif. Technol., 250(2020), art. No. 117258. doi: 10.1016/j.seppur.2020.117258
    [15]
    P. Xu, C.W. Liu, X.H. Zhang, X.H. Zheng, W.G. Lv, F. Rao, P.F. Yao, J.W. Wang, and Z. Sun, Synergic mechanisms on carbon and sulfur during the selective recovery of valuable metals from spent lithium-ion batteries, ACS Sustainable Chem. Eng., 9(2021), No. 5, p. 2271. doi: 10.1021/acssuschemeng.0c08213
    [16]
    Y.Y. Ma, J.J. Tang, R. Wanaldi, X.Y. Zhou, H. Wang, C.Y. Zhou, and J. Yang, A promising selective recovery process of valuable metals from spent lithium ion batteries via reduction roasting and ammonia leaching, J. Hazard. Mater., 402(2021), art. No. 123491. doi: 10.1016/j.jhazmat.2020.123491
    [17]
    T. Georgi-Maschler, B. Friedrich, R. Weyhe, H. Heegn, and M. Rutz, Development of a recycling process for Li-ion batteries, J. Power Sources, 207(2012), p. 173. doi: 10.1016/j.jpowsour.2012.01.152
    [18]
    C. Yang, J.L. Zhang, Q.K. Jing, Y.B. Liu, Y.Q. Chen, and C.Y. Wang, Recovery and regeneration of LiFePO4 from spent lithium-ion batteries via a novel pretreatment process, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1478. doi: 10.1007/s12613-020-2137-6
    [19]
    J.F. Xiao, R.T. Gao, B. Niu, and Z.M. Xu, Study of reaction characteristics and controlling mechanism of chlorinating conversion of cathode materials from spent lithium-ion batteries, J. Hazard. Mater., 407(2021), art. No. 124704. doi: 10.1016/j.jhazmat.2020.124704
    [20]
    J.F. Xiao, B. Niu, Q.M. Song, L. Zhan, and Z.M. Xu, Novel targetedly extracting lithium: An environmental-friendly controlled chlorinating technology and mechanism of spent lithium ion batteries recovery, J. Hazard. Mater., 404(2021), art. No. 123947. doi: 10.1016/j.jhazmat.2020.123947
    [21]
    Y.Q. Tang, X. Qu, B.L. Zhang, Y. Zhao, H.W. Xie, J.J. Zhao, Z.Q. Ning, P.F. Xing, and H.Y. Yin, Recycling of spent lithium nickel cobalt manganese oxides via a low-temperature ammonium sulfation roasting approach, J. Clean. Prod., 279(2021), art. No. 123633. doi: 10.1016/j.jclepro.2020.123633
    [22]
    S.C. He and Z.H. Liu, Efficient process for recovery of waste LiMn2O4 cathode material: Low-temperature (NH4)2SO4 calcination mechanisms and water-leaching characteristics, Waste Manage., 108(2020), p. 28. doi: 10.1016/j.wasman.2020.04.030
    [23]
    H. Li, J. Eksteen, and G. Kuang, Recovery of lithium from mineral resources: State-of-the-art and perspectives - A review, Hydrometallurgy, 189(2019), art. No. 105129. doi: 10.1016/j.hydromet.2019.105129
    [24]
    G.X. Ren, S.W. Xiao, M.Q. Xie, B. Pan, J. Chen, F.G. Wang, and X. Xia, Recovery of valuable metals from spent lithium ion batteries by smelting reduction process based on FeO−SiO2−Al2O3 slag system, Trans. Nonferrous Met. Soc. China, 27(2017), No. 2, p. 450. doi: 10.1016/S1003-6326(17)60051-7
    [25]
    S.W. Xiao, G.X. Ren, M.Q. Xie, B. Pan, Y.Q. Fan, F.G. Wang, and X. Xia, Recovery of valuable metals from spent lithium-ion batteries by smelting reduction process based on MnO−SiO2−Al2O3 slag system, J. Sustain. Metall., 3(2017), No. 4, p. 703. doi: 10.1007/s40831-017-0131-7
    [26]
    J. Heulens, D. Van Horebeek, M. Quix, and S. Brouwer, Process for Smelting Lithium-Ion Batteries, United States Patent, Appl. 15/503416, 2017.
    [27]
    H. Dang, B.F. Wang, Z.D. Chang, X. Wu, J.G. Feng, H.L. Zhou, W.J. Li, and C.Y. Sun, Recycled lithium from simulated pyrometallurgical slag by chlorination roasting, ACS Sustainable Chem. Eng., 6(2018), No. 10, p. 13160. doi: 10.1021/acssuschemeng.8b02713
    [28]
    H. Su, J.Y. Ju, J. Zhang, A.F. Yi, Z. Lei, L.N. Wang, Z.W. Zhu, and T. Qi, Lithium recovery from lepidolite roasted with potassium compounds, Miner. Eng., 145(2020), art. No. 106087. doi: 10.1016/j.mineng.2019.106087
    [29]
    N. Li, J.H. Guo, Z.D. Chang, H. Dang, X. Zhao, S. Ali, W.J. Li, H.L. Zhou, and C.Y. Sun, Aqueous leaching of lithium from simulated pyrometallurgical slag by sodium sulfate roasting, RSC Adv., 9(2019), No. 41, p. 23908. doi: 10.1039/C9RA03754C
    [30]
    V.T. Luong, D.J. Kang, J.W. An, M.J. Kim, and T. Tran, Factors affecting the extraction of lithium from lepidolite, Hydrometallurgy, 134-135(2013), p. 54. doi: 10.1016/j.hydromet.2013.01.015
    [31]
    L.L.D. Santos, R.M.D. Nascimento, and S.B.C. Pergher, Beta-spodumene: Na2CO3: NaCl system calcination: A kinetic study of the conversion to lithium salt, Chem. Eng. Res. Des., 147(2019), p. 338. doi: 10.1016/j.cherd.2019.05.019
    [32]
    H. Dang, N. Li, Z.D. Chang, B.F. Wang, Y.F. Zhan, X. Wu, W.B. Liu, S. Ali, H.D. Li, J.H. Guo, W.J. Li, H.L. Zhou, and C.Y. Sun, Lithium leaching via calcium chloride roasting from simulated pyrometallurgical slag of spent lithium ion battery, Sep. Purif. Technol., 233(2020), art. No. 116025. doi: 10.1016/j.seppur.2019.116025
    [33]
    L.I. Barbosa, J.A. González, and M.D.C. Ruiz, Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride, Thermochim. Acta, 605(2015), p. 63. doi: 10.1016/j.tca.2015.02.009
    [34]
    T.T. Hien-Dinh, V.T. Luong, R. Gieré, and T. Tran, Extraction of lithium from lepidolite via iron sulphide roasting and water leaching, Hydrometallurgy, 153(2015), p. 154. doi: 10.1016/j.hydromet.2015.03.002
    [35]
    X.L. Xi, M. Feng, L.W. Zhang, and Z.R. Nie, Applications of molten salt and progress of molten salt electrolysis in secondary metal resource recovery, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1599. doi: 10.1007/s12613-020-2175-0
    [36]
    B. Yang, J.B. Zhou, W.W. Wang, C. Liu, D.L. Zhou, and L. Yang, Extraction and separation of tungsten and vanadium from spent V2O5−WO3/TiO2 SCR catalysts and recovery of TiO2 and sodium titanate nanorods as adsorbent for heavy metal ions, Colloids Surf. A, 601(2020), art. No. 124963. doi: 10.1016/j.colsurfa.2020.124963
    [37]
    C.S. Song, D.L. Zhou, L. Yang, J.B. Zhou, C. Liu, and Z.G. Chen, Recovery TiO2 and sodium titanate nanowires as Cd(II) adsorbent from waste V2O5−WO3/TiO2 selective catalytic reduction catalysts by Na2CO3–NaCl–KCl molten salt roasting method, J. Taiwan Inst. Chem. Eng., 88(2018), p. 226. doi: 10.1016/j.jtice.2018.04.006
    [38]
    Q.X. Yan, X.H. Li, Z.X. Wang, J.X. Wang, H.J. Guo, Q.Y. Hu, W.J. Peng, and X.F. Wu, Extraction of lithium from lepidolite using chlorination roasting-water leaching process, Trans. Nonferrous Met. Soc. China, 22(2012), No. 7, p. 1753. doi: 10.1016/S1003-6326(11)61383-6
    [39]
    D. Cheret, and S. Santen, Battery Recycling, United States Patent, Appl. 1589121. B1, 2008.
    [40]
    J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865. doi: 10.1103/PhysRevLett.77.3865
    [41]
    H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13(1976), No. 12, p. 5188. doi: 10.1103/PhysRevB.13.5188
    [42]
    I.H. Lee and R.M. Martin, Applications of the generalized-gradient approximation to atoms, clusters, and solids, Phys. Rev. B, 56(1997), No. 12, p. 7197. doi: 10.1103/PhysRevB.56.7197
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(1770) PDF Downloads(113) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return