Mana Rodchom, Panida Wimuktiwan, Kanit Soongprasit, Duangduen Atong,  and Supawan Vichaphund, Preparation and characterization of ceramic materials with low thermal conductivity and high strength using high-calcium fly ash, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1635-1645. https://doi.org/10.1007/s12613-021-2367-2
Cite this article as:
Mana Rodchom, Panida Wimuktiwan, Kanit Soongprasit, Duangduen Atong,  and Supawan Vichaphund, Preparation and characterization of ceramic materials with low thermal conductivity and high strength using high-calcium fly ash, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1635-1645. https://doi.org/10.1007/s12613-021-2367-2
Research Article

Preparation and characterization of ceramic materials with low thermal conductivity and high strength using high-calcium fly ash

+ Author Affiliations
  • Corresponding author:

    Supawan Vichaphund    E-mail: supawank@mtec.or.th

  • Received: 26 April 2021Revised: 28 September 2021Accepted: 21 October 2021Available online: 22 October 2021
  • High calcium-fly ash (HCFA) collected from the Mae Moh electricity generating plant in Thailand was utilized as a raw material for ceramic production. The main compositions of HCFA characterized by X-ray fluorescence mainly consisted of 28.55wt% SiO2, 16.06wt% Al2O3, 23.40wt% CaO, and 17.03wt% Fe2O3. Due to high proportion of calcareous and ferruginous contents, HCFA was used for replacing the potash feldspar in amounts of 10wt%–40wt%. The influence of substituting high-calcium fly ash (0–40wt%) and sintering temperatures (1000–1200°C) on physical, mechanical, and thermal properties of ceramic-based materials was investigated. The results showed that the incorporation of HCFA in appropriate amounts could enhance the densification and the strength as well as reduce the thermal conductivity of ceramic samples. High proportion of calcareous and ferruginous constituents in fly ash promoted the vitrification behavior of ceramic samples. As a result, the densification was enhanced by liquid phase formation at optimum fly ash content and sintering temperature. In addition, these components also facilitated a more abundant mullite formation and consequently improved flexural strength of the ceramic samples. The optimum ceramic properties were achieved with adding fly ash content between 10wt%–30wt% sintered at 1150–1200°C. At 1200°C, the maximum flexural strength of ceramic-FA samples with adding fly ash 10wt%–30wt% (PSW-FA(10)–(30)) was obtained in the range of 92.25–94.71 MPa when the water absorption reached almost zero (0.03%). In terms of thermal insulation materials, the increase in fly ash addition had a positively effect on the thermal conductivity, due to the higher levels of porosity created by gas evolving from the inorganic decomposition reactions inside the ceramic-FA samples. The addition of 20wt%–40wt% high-calcium fly ash in ceramic samples sintered at 1150°C reduced the thermal conductivity to 14.78%–49.25%, while maintaining acceptable flexural strength values (~45.67–87.62 MPa). Based on these promising mechanical and thermal characteristics, it is feasible to utilize this high-calcium fly ash as an alternative raw material in clay compositions for manufacturing of ceramic tiles.

  • loading
  • [1]
    S.B. Wang, Application of solid ash based catalysts in heterogeneous catalysis, Environ. Sci. Technol., 42(2008), No. 19, p. 7055. doi: 10.1021/es801312m
    [2]
    M. Park, C.L. Choi, W.T. Lim, M.C. Kim, J. Choi, and N.H. Heo, Molten-salt method for the synthesis of zeolitic materials: I. Zeolite formation in alkaline molten-salt system, Microporous Mesoporous Mater., 37(2000), No. 1-2, p. 81. doi: 10.1016/S1387-1811(99)00196-1
    [3]
    N. Murayama, H. Yamamoto, and J. Shibata, Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction, Int. J. Miner. Process., 64(2002), No. 1, p. 1. doi: 10.1016/S0301-7516(01)00046-1
    [4]
    J.T. Soe, S.S. Kim, Y.R. Lee, J.W. Ahn, and W.S. Ahn, CO2 capture and Ca2+ exchange using zeolite A and 13X prepared from power plant fly ash, Bull. Korean Chem. Soc., 37(2016), No. 4, p. 490. doi: 10.1002/bkcs.10710
    [5]
    R. Panek, M. Wdowin, W. Franus, et al., Fly ash-derived MCM-41 as a low-cost silica support for polyethyleneimine in post-combustion CO2 capture, J. CO2 Util., 22(2017), p. 81. doi: 10.1016/j.jcou.2017.09.015
    [6]
    P. Kumar, N. Mal, Y. Oumi, K. Yamana, and T. Sano, Mesoporous materials prepared using coal fly ash as the silicon and aluminium source, J. Mater. Chem., 11(2001), No. 12, p. 3285. doi: 10.1039/b104810b
    [7]
    S. Vichaphund, D. Aht-Ong, V. Sricharoenchaikul, and D. Atong, Characteristic of fly ash derived-zeolite and its catalytic performance for fast pyrolysis of Jatropha waste, Environ. Technol., 35(2014), No. 17, p. 2254. doi: 10.1080/09593330.2014.900118
    [8]
    S. Vichaphund, V. Sricharoenchaikul, and D. Atong, Utilization of fly ash-derived HZSM-5: Catalytic pyrolysis of Jatropha wastes in a fixed-bed reactor, Environ. Technol., 38(2017), No. 13-14, p. 1660. doi: 10.1080/09593330.2016.1244567
    [9]
    J.J. Feng, J.W. Sun, and P.Y. Yan, The influence of ground fly ash on cement hydration and mechanical property of mortar, Adv. Civ. Eng., 2018(2018), art. No. 4023178. doi: 10.1155/2018/4023178
    [10]
    R. Rajamma, R.J. Ball, L.A.C. Tarelho, G.C. Allen, J.A. Labrincha, and V.M. Ferreira, Characterisation and use of biomass fly ash in cement-based materials, J. Hazard. Mater., 172(2009), No. 2-3, p. 1049. doi: 10.1016/j.jhazmat.2009.07.109
    [11]
    T.H.M. Le, D.W. Park, J.Y. Park, and T.M. Phan, Evaluation of the effect of fly ash and slag on the properties of cement asphalt mortar, Adv. Mater. Sci. Eng., 2019(2019), art. No. 1829328. doi: 10.1155/2019/1829328
    [12]
    F. Skvara, T. Jilek, and L. Kopecky, Geopolymer materials based on fly ash, Ceram. Silik., 49(2005), No. 3, p. 195.
    [13]
    R.M. Novais, L.H. Buruberri, G. Ascensão, M.P. Seabra, and J.A. Labrincha, Porous biomass fly ash-based geopolymers with tailored thermal conductivity, J. Clean. Prod., 119(2016), p. 99. doi: 10.1016/j.jclepro.2016.01.083
    [14]
    S. Alehyen, M.E.L. Achouri, and M. Taibi, Characterization, microstructure and properties of fly ash-based geopolymer, J. Mater. Environ. Sci., 8(2017), No. 5, p. 1783.
    [15]
    J.J. Feng, R.F. Zhang, L.L. Gong, Y. Li, W. Cao, and X.D. Cheng, Development of porous fly ash-based geopolymer with low thermal conductivity, Mater. Des., 65(2015), p. 529. doi: 10.1016/j.matdes.2014.09.024
    [16]
    K. Dana, S. Das, and S.K. Das, Effect of substitution of fly ash for quartz in triaxial kaolin–quartz–feldspar system, J. Eur. Ceram. Soc., 24(2004), No. 10-11, p. 3169. doi: 10.1016/j.jeurceramsoc.2003.10.008
    [17]
    T.K. Mukhopadhyay, S. Ghosh, J. Ghosh, S. Ghatak, and H.S. Maiti, Effect of fly ash on the physico-chemical and mechanical properties of a porcelain composition, Ceram. Int., 36(2010), No. 3, p. 1055. doi: 10.1016/j.ceramint.2009.12.012
    [18]
    Y. Luo, S.L. Zheng, S.H. Ma, C.L. Liu, and X.H. Wang, Ceramic tiles derived from coal fly ash: Preparation and mechanical characterization, Ceram. Int., 43(2017), No. 15, p. 11953. doi: 10.1016/j.ceramint.2017.06.045
    [19]
    H. Wang, M.G. Zhu, Y.Q. Sun, R. Ji, L.L. Liu, and X.D. Wang, Synthesis of a ceramic tile base based on high-alumina fly ash, Constr. Build. Mater., 155(2017), p. 930. doi: 10.1016/j.conbuildmat.2017.07.049
    [20]
    EGAT Biznews, Coal Combustion Products, Electricity Generating Authority of Thailand (EGAT), Thailand [2020-12-30]. https://www.egatbusiness.com/archive/biznews/2560/BizNews2017-4.pdf
    [21]
    Y. Deng, B. Gong, Y. Chao, et al., Sustainable utilization of municipal solid waste incineration fly ash for ceramic bricks with eco-friendly biosafety, Mater. Today Sustain., 1-2(2018), p. 32. doi: 10.1016/j.mtsust.2018.11.002
    [22]
    N.U. Kockal, Utilisation of different types of coal fly ash in the production of ceramic tiles, Bol. Soc. Esp. Ceram. Vidrio, 51(2012), No. 5, p. 297. doi: 10.3989/cyv.412012
    [23]
    S.S. Hossain, V. Ranjan, R. Pyare, and P.K. Roy, Study the effect of physico-mechanical characteristics of ceramic tiles after addition of river silts and wollastonite derived from wastes, Constr. Build. Mater., 209(2019), p. 315. doi: 10.1016/j.conbuildmat.2019.03.128
    [24]
    H. Wang, Y.Q. Sun, L.L. Liu, R. Ji, and X.D. Wang, Integrated utilization of fly ash and waste glass for synthesis of foam/dense bi-layered insulation ceramic tile, Energy Build., 168(2018), p. 67. doi: 10.1016/j.enbuild.2018.03.018
    [25]
    M.K. Zhou, X.X. Ge, H.D. Wang, L.S. Chen, and X. Chen, Effect of the CaO content and decomposition of calcium-containing minerals on properties and microstructure of ceramic foams from fly ash, Ceram. Int., 43(2017), No. 12, p. 9451. doi: 10.1016/j.ceramint.2017.04.122
    [26]
    Y. Luo, J.Y. Wang, Y.H. Wu, X.Y. Li, P.K. Chu, and T. Qi, Substitution of quartz and clay with fly ash in the production of architectural ceramics: A mechanistic study, Ceram. Int., 47(2021), No. 9, p. 12514. doi: 10.1016/j.ceramint.2021.01.109
    [27]
    R.Y. Chen, Y.B. Li, R.F. Xiang, and S.J. Li, Effect of particle size of fly ash on the properties of lightweight insulation materials, Constr. Build. Mater., 123(2016), p. 120. doi: 10.1016/j.conbuildmat.2016.06.140
    [28]
    M.F. Serra, M.S. Conconi, G. Suarez, E.F. Aglietti, and N.M. Rendtorff, Volcanic ash as flux in clay based triaxial ceramic materials, effect of the firing temperature in phases and mechanical properties, Ceram. Int., 41(2015), No. 5, p. 6169. doi: 10.1016/j.ceramint.2014.12.123
    [29]
    S. Vichaphund, K. Somton, T. Wonglom, M. Rodchom, and D. Atong, Utilization of basalt fibers as a raw material for clay ceramic production, Ceram. Silik., (2016), p. 72.
    [30]
    International Organization for Standardization, ISO 13006: Ceramic Tiles—Definitions, Classification, Characteristics and Marking, International Organization for Standardization, Geneva, 1998.
    [31]
    R. Ji, Z.T. Zhang, C. Yan, M.G. Zhu, and Z.M. Li, Preparation of novel ceramic tiles with high Al2O3 content derived from coal fly ash, Constr. Build. Mater., 114(2016), p. 888. doi: 10.1016/j.conbuildmat.2016.04.014
    [32]
    A. Zimmer and C.P. Bergmann, Fly ash of mineral coal as ceramic tiles raw material, Waste Manage., 27(2007), No. 1, p. 59. doi: 10.1016/j.wasman.2006.01.009
    [33]
    S.J. Ke, Y.M. Wang, Z.D. Pan, C.Y. Ning, and S.L. Zheng, Recycling of polished tile waste as a main raw material in porcelain tiles, J. Clean. Prod., 115(2016), p. 238. doi: 10.1016/j.jclepro.2015.12.064
    [34]
    T.K. Mukhopadhyay, S. Ghosh, S. Ghatak, and H.S. Maiti, Effect of pyrophyllite on vitrification and on physical properties of triaxial porcelain, Ceram. Int., 32(2006), No. 8, p. 871. doi: 10.1016/j.ceramint.2005.07.002
    [35]
    Y. Iqbal and W.E. Lee, Microstructural evolution in triaxial porcelain, J. Am. Ceram. Soc., 83(2000), No. 12, p. 3121. doi: 10.1111/j.1151-2916.2000.tb01692.x
    [36]
    Y.M. Park, T.Y. Yang, S.Y. Yoon, R. Stevens, and H.C. Park, Mullite whiskers derived from coal fly ash, Mater. Sci. Eng. A, 454-455(2007), p. 518. doi: 10.1016/j.msea.2006.11.114
    [37]
    T.Y. Wang, S.H. Ma, X.H. Wang, T. Hong, and Y. Luo, A 100% high-aluminum fly ash-based high-density mullite ceramic with a triple microstructure: Preparation and mechanical characterization, Constr. Build. Mater., 239(2020), art. No. 117761. doi: 10.1016/j.conbuildmat.2019.117761
    [38]
    R.F. Zhang, J.J. Feng, X.D. Cheng, L.L. Gong, Y. Li, and H.P. Zhang, Porous thermal insulation materials derived from fly ash using a foaming and slip casting method, Energy Build., 81(2014), p. 262. doi: 10.1016/j.enbuild.2014.06.028
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(2574) PDF Downloads(68) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return