Cite this article as: |
Elham Mohseni-Sohiand Farshid Kashani Bozorg, Effect of Al substitution on phase evolution in synthesized Mg2Cu nanoparticles, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 63-71. https://doi.org/10.1007/s12613-021-2368-1 |
Elham Mohseni-Sohi E-mail: elham.mohseni@stud.tu-darmstadt.de
[1] |
V.V. Goidin, V.V. Molchanov, and R.A. Buyanov, Mechanochemical synthesis of intermetallic hydrides at elevated hydrogen pressures, Inorg. Mater., 40(2004), No. 11, p. 1165. doi: 10.1023/B:INMA.0000048215.08698.ba
|
[2] |
Y.M. Dergachev, I.G. Gorichev, and N.T. Kuznetsov, Kinetics of aluminum hydride thermal decomposition, Inorg. Mater., 36(2000), No. 5, p. 458. doi: 10.1007/BF02758047
|
[3] |
J.Z. Song, Z.Y. Zhao, X. Zhao, R.D. Fu, and S.M. Han, Hydrogen storage properties of MgH2 co-catalyzed by LaH3 and NbH, Int. J. Miner. Metall. Mater., 24(2017), No. 10, p. 1183. doi: 10.1007/s12613-017-1509-z
|
[4] |
S.R. Ovshinsky, M.A. Fetcenko, and J. Ross, A nickel metal hydride battery for electric vehicles, Science, 260(1993), No. 5105, p. 176. doi: 10.1126/science.260.5105.176
|
[5] |
W.L. Mi, Z.S. Liu, T. Kimura, A. Kamegawa, and H.L. Wang, Crystal structure and hydrogen storage properties of (La, Ce)Ni5−xMx (M = Al, Fe, or Co) alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 1, p. 108. doi: 10.1007/s12613-019-1714-z
|
[6] |
A. Taniguchi, N. Fujioka, M. Ikoma, and A. Ohta, Development of nickel/metal-hydride batteries for EVs and HEVs, J. Power Sources, 100(2001), No. 1-2, p. 117. doi: 10.1016/S0378-7753(01)00889-8
|
[7] |
T. Ozaki, M. Kanemoto, T. Kakeya, Y. Kitano, M. Kuzuhara, M. Watada, S. Tanase, and T. Sakai, Stacking structures and electrode performances of rare earth-Mg-Ni-based alloys for advanced nickel-metal hydride battery, J. Alloys Compd., 446-447(2007), p. 620. doi: 10.1016/j.jallcom.2007.03.059
|
[8] |
Y. Li, Y. Tao, and Q. Huo, Effect of stoichiometry and Cu-substitution on the phase structure and hydrogen storage properties of Ml-Mg-Ni-based alloys, Int. J. Miner. Metall. Mater., 22(2015), No. 1, p. 86. doi: 10.1007/s12613-015-1047-5
|
[9] |
N.N. Yazvinskaya, N.E. Galushkin, D.N. Galushkin, and I.A. Galushkina, Analysis of thermal runaway aftereffects in nickel-cadmium batteries, Int. J. Electrochem. Sci., 11(2016), No. 12, p. 10287. doi: 10.20964/2016.12.44
|
[10] |
N.N. Yazvinskaya, N.E. Galushkin, D.N. Galushkin, and I.A. Galushkina, Hydrogen amount estimation in electrodes of nickel-cadmium batteries depending on their operating life, Int. J. Electrochem. Sci., 11(2016), p. 7843. doi: 10.20964/2016.09.49
|
[11] |
Z.T. Dong, Y. Li, K.L. Ren, S.Q. Yang, Y.M. Zhao, Y.J. Yuan, L. Zhang, and S.M. Han, Enhanced electrochemical properties of LaFeO3 with Ni modification for MH-Ni batteries, Int. J. Miner. Metall. Mater., 25(2018), No. 10, p. 1201. doi: 10.1007/s12613-018-1672-x
|
[12] |
T. Tojo, I. Yamamoto, Q.W. Zhang, and F. Saito, Discharge properties of Mg2Ni-Ni alloy synthesized by mechanical alloying, Adv. Powder Technol., 16(2005), No. 6, p. 649. doi: 10.1163/156855205774483299
|
[13] |
A. Gasiorowski, W. Iwasieczko, D. Skoryna, H. Drulis, and M. Jurczyk, Hydriding properties of nanocrystalline Mg2−xMxNi alloys synthesized by mechanical alloying (M=Mn, Al), J. Alloys Compd., 364(2004), No. 1-2, p. 283. doi: 10.1016/S0925-8388(03)00544-9
|
[14] |
A. Szajek, M. Jurczyk, I. Okońska, K. Smardz, E. Jankowska, and L. Smardz, Electrochemical and electronic properties of nanocrystalline Mg-based hydrogen storage materials, J. Alloys Compd., 436(2007), No. 1-2, p. 345. doi: 10.1016/j.jallcom.2006.07.043
|
[15] |
K. Tanaka, N. Takeichi, H. Tanaka, N. Kuriyama, T. Ueda, M. Tsukahara, H. Miyamura, and S. Kikuchi, TEM investigation of micro/nano-structures and hydrogen storage properties of Mg/Cu super-laminates and Mg2Cu powder, Microsc. Microanal., 13(2007), No. S02, p. 1098. doi: 10.1017/S1431927607073175
|
[16] |
X. Yao, S.D. McDonald, A.K. Dahle, C.J. Davidson, and D.H. StJohn, Modeling of grain refinement: Part III. Al−7Si−0.3Mg aluminum alloy, J. Mater. Res., 23(2008), No. 5, p. 1301. doi: 10.1557/JMR.2008.0155
|
[17] |
L.S. Volkova, G.V. Kalinnikov, A.V. Ivanov, and S.P. Shilkin, Synthesis of Mg2Cu and MgCu2 nanoparticles In a KCl−NaCl−MgCl2 melt, Inorg. Mater., 48(2012), No. 11, p. 1078. doi: 10.1134/S0020168512110179
|
[18] |
V.N. Fokin, P.V. Fursikov, E.E. Fokina, and B.P. Tarasov, Hydrogenation of eutectic alloy in the Mg–Al system, Inorg. Mater., 57(2021), No. 3, p. 234. doi: 10.1134/S0020168521030043
|
[19] |
M. Anik, F. Karanfil, and N. Küçükdeveci, Development of the high performance magnesium based hydrogen storage alloy, Int. J. Hydrogen Energy, 37(2012), No. 1, p. 299. doi: 10.1016/j.ijhydene.2011.09.057
|
[20] |
N. Cui, B. Luan, H.K. Liu, H.J. Zhao, and S.X. Dou, Characteristics of magnesium-based hydrogen-storage alloy electrodes, J. Power Sources, 55(1995), No. 2, p. 263. doi: 10.1016/0378-7753(95)02195-M
|
[21] |
N. Cui, P. He, and J.L. Luo, Magnesium-based hydrogen storage materials modified by mechanical alloying, Acta Mater., 47(1999), No. 14, p. 3737. doi: 10.1016/S1359-6454(99)00249-9
|
[22] |
J.J. Reilly and R.H. Wiswall, Reaction of hydrogen with alloys of magnesium and copper, Inorg. Chem., 6(1967), No. 12, p. 2220. doi: 10.1021/ic50058a020
|
[23] |
M. Jurczyk, L. Smardz, and A. Szajek, Nanocrystalline materials for Ni-MH batteries, Mater. Sci. Eng. B, 108(2004), No. 1-2, p. 67. doi: 10.1016/j.mseb.2003.10.050
|
[24] |
P. Novák, D. Vojtěch, F. Průša, J. Šerák, and T. Fabián, Structure and properties of magnesium-based hydrogen storage alloys, Mater. Sci. Forum, 567-568(2007), p. 217. doi: 10.4028/www.scientific.net/MSF.567-568.217
|
[25] |
L. Lu and Y.F. Zhang, Influence of process control agent on interdiffusion between Al and Mg during mechanical alloying, J. Alloys Compd., 290(1999), No. 1-2, p. 279. doi: 10.1016/S0925-8388(99)00221-2
|
[26] |
M. Jurczyk, L. Smardz, I. Okonska, E. Jankowska, M. Nowak, and K. Smardz, Nanoscale Mg-based materials for hydrogen storage, Int. J. Hydrogen Energy, 33(2008), No. 1, p. 374. doi: 10.1016/j.ijhydene.2007.07.022
|
[27] |
X.D. Yao and G.Q. Lu, Magnesium-based materials for hydrogen storage: Recent advances and future perspectives, Chin. Sci. Bull., 53(2008), No. 16, p. 2421. doi: 10.1007/s11434-008-0325-2
|
[28] |
M. Jurczyk, I. Okonska, W. Iwasieczko, E. Jankowska, and H. Drulis, Thermodynamic and electrochemical properties of nanocrystalline Mg2Cu-type hydrogen storage materials, J. Alloys Compd., 429(2007), No. 1-2, p. 316. doi: 10.1016/j.jallcom.2006.04.024
|
[29] |
G. Mulas, M. Varga, I. Bertóti, Á. Molnár, G. Cocco, and J. Szépvölgyi, Cu40Mg60 and Cu-MgO powders prepared by ball-milling: Characterization and catalytic tests, Mater. Sci. Eng., A, 267(1999), No. 2, p. 193. doi: 10.1016/S0921-5093(99)00091-X
|
[30] |
G. Mulas, S. Deledda, and G. Cocco, The mechanochemical conversion of acetone to methyl isobutyl ketone over Cu-Mg based substrates, Mater. Sci. Eng., A, 267(1999), No. 2, p. 214. doi: 10.1016/S0921-5093(99)00094-5
|
[31] |
Z. Ma, Y. Liu, L. Yu, and Q. Cai, Investigation of phase composition and nanoscale microstructure of high-energy ball-milled MgCu sample, Nanoscale Res. Lett., 7(2012), No. 1, p. 390. doi: 10.1186/1556-276X-7-390
|
[32] |
R. Wiswall, Hydrogen storage in metals., [in] G. Alefeld and J. Völkl, eds., Hydrogen in Metals II. Topics in Applied Physics, Springer-Verlag Berlin, Heidelberg, 1978, p. 201.
|
[33] |
S. Rousselot, M.P. Bichat, D. Guay, and L. Roué, Structure and electrochemical hydrogen storage properties of mg-ti based materials prepared by mechanical alloying, ECS Trans., 16(2019), No. 42, p. 91. doi: 10.1149/1.3112733
|
[34] |
L.Z. Ouyang, T.H. Yang, M. Zhu, D. Min, T.Z. Luo, H. Wang, F.M. Xiao, and R.H. Tang, Hydrogen storage and electrochemical properties of Pr, Nd and Co-free La13.9Sm24.7Mg1.5Ni58Al1.7Zr0.14Ag0.07 alloy as a nickel-metal hydride battery electrode, J. Alloys Compd., 735(2018), p. 98. doi: 10.1016/j.jallcom.2017.10.268
|
[35] |
S. Bliznakov, E. Lefterova, N. Dimitrov, K. Petrov, and A. Popov, A study of the Al content impact on the properties of MmNi4.4−xCo0.6Alx alloys as precursors for negative electrodes in NiMH batteries, J. Power Sources, 176(2008), No. 1, p. 381. doi: 10.1016/j.jpowsour.2007.10.028
|
[36] |
E.C. Souza, and E.A. Ticianelli, On the properties of LaNi5-type metal hydride alloys, J. Brazalian Chem. Soc., 14(2003), p. 544. doi: 10.1590/S0103-50532003000400009
|
[37] |
R.C. Zeng, Z.G. Liu, F. Zhang, S.Q. Li, Q.K. He, H.Z. Cui, and E.H. Han, Corrosion resistance of in situ Mg−Al hydrotalcite conversion film on AZ31 magnesium alloy by one-step formation, Trans. Nonferrous Met. Soc. China, 25(2015), No. 6, p. 1917. doi: 10.1016/S1003-6326(15)63799-2
|
[38] |
A. Wagih, Effect of Mg addition on mechanical and thermoelectrical properties of Al-Al2O3 nanocomposite, Trans. Nonferrous Met. Soc. China, 26(2016), No. 11, p. 2810. doi: 10.1016/S1003-6326(16)64409-6
|
[39] |
N. Mani and S. Ramaprabhu, Effect of substitutional elements on hydrogen absorption properties in Mm-based AB5 alloys, J. Alloys Compd., 363(2004), No. 1-2, p. 275. doi: 10.1016/S0925-8388(03)00487-0
|
[40] |
T. Sakai, H. Miyamura, N. Kuriyama, A. Kato, K. Oguro, H. Ishikawa, and C. Iwakura, The influence of small amounts of added elements on various anode performance characteristics for LaNi2.5Co2.5-based alloys, J. Less Common Met., 159(1990), p. 127. doi: 10.1016/0022-5088(90)90140-F
|
[41] |
D. Shin and Z.K. Liu, Enthalpy of mixing for ternary fcc solid solutions from special quasirandom structures, Calphad, 32(2008), No. 1, p. 74. doi: 10.1016/j.calphad.2007.09.002
|
[42] |
M.X. Tanaka, N. Takeichi, H.T. Takeshita, and T. Kiyobayashi, Effect of ball-milling on the properties of Mg2Cu hydrogen storage alloy, Mater. Trans., 49(2008), No. 11, p. 2698. doi: 10.2320/matertrans.MRA2008183
|
[43] |
Z.Q. Ma, Y.C. Liu, L.M. Yu, and Q. Cai, Correction: Investigation of phase composition and nanoscale microstructure of high-energy ball-milled MgCu sample, Nanoscale Res. Lett., 8(2013), No. 1, p. 186. doi: 10.1186/1556-276X-8-186
|
[44] |
J. Gilbert Kaufman, Introduction to Aluminium Alloys and Tempers, ASM International, 2000.
|
[45] |
C.C. Koch, The synthesis and structure of nanocrystalline materials produced by mechanical attrition: A review, Nanostruct. Mater., 2(1993), No. 2, p. 109. doi: 10.1016/0965-9773(93)90016-5
|
[46] |
M. Mohri and S.F. Kashani Bozorg, An electrochemical investigation of nanocrystalline Mg2Ni0.75Nb0.25 compound synthesized by mechanical alloying, Int. J. Mod. Phys. B, 22(2008), No. 18n19, p. 2939. doi: 10.1142/S021797920804778X
|
[47] |
J. Chen, P. Yao, D.H. Bradhurst, S.X. Dou, and H.K. Liu, Mg2Ni-based hydrogen storage alloys for metal hydride electrodes, J. Alloys Compd., 293-295(1999), p. 675. doi: 10.1016/S0925-8388(99)00429-6
|
[48] |
R. Abbasi and S.F. Kashani-Bozorg, Electrochemical and kinetic performance of amorphous/nanostructured TiNi-based intermetallic compound with Nb substitution synthesized by mechanical alloying, J. Mater. Res., 33(2018), No. 22, p. 3774. doi: 10.1557/jmr.2018.231
|