Huabao Yang, Yanfu Chai, Bin Jiang, Chao He, Junjie He, Qingshan Yang, and Ming Yuan, Enhanced mechanical properties of Mg–3Al–1Zn alloy sheets through slope extrusion, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1343-1350. https://doi.org/10.1007/s12613-021-2370-7
Cite this article as:
Huabao Yang, Yanfu Chai, Bin Jiang, Chao He, Junjie He, Qingshan Yang, and Ming Yuan, Enhanced mechanical properties of Mg–3Al–1Zn alloy sheets through slope extrusion, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1343-1350. https://doi.org/10.1007/s12613-021-2370-7
Research Article

Enhanced mechanical properties of Mg–3Al–1Zn alloy sheets through slope extrusion

+ Author Affiliations
  • Corresponding authors:

    Yanfu Chai    E-mail: 1073330140@qq.com

    Bin Jiang    E-mail: Jiangbinrong@cqu.edu.cn

  • Received: 11 September 2021Revised: 27 October 2021Accepted: 27 October 2021Available online: 28 October 2021
  • A novel extrusion approach, entitled slope extrusion (SE), was employed to manufacture AZ31 (Mg–3Al–1Zn, wt%) alloy sheets. The microstructures, textures, and mechanical properties were investigated, compared with those of the AZ31 sheet fabricated by conventional extrusion (CE). Through the combination of finite element simulation and actual experiment, the ultimate results indicated that significant grain refinement (from 9.1 to 7.7 and 5.6 μm) and strong basal texture (from 12.6 to 17.6 and 19.5 mrd) were achieved by the SE process. The essence was associated with the additional introduced inclined interface in the process of SE, which could bring about more asymmetric deformation and stronger accumulated strain along the ND when compared with the process of CE. As a consequence, the SE sheets exhibited a higher yield strength (YS) and ultimate tensile strength (UTS) than the counterparts of the CE sheet, which was mainly assigned to the synergistic effects from grain refining and texture strengthening.
  • loading
  • [1]
    J.F. Song, J. She, D.L. Chen, and F.S. Pan, Latest research advances on magnesium and magnesium alloys worldwide, J. Magnes. Alloys, 8(2020), No. 1, p. 1. doi: 10.1016/j.jma.2020.02.003
    [2]
    Q.S. Yang, Q.W. Dai, C. Lou, J.H. Dai, J.Y. Zhang, B. Jiang, and F.S. Pan, Twinning, grain orientation, and texture variations in Mg alloy processed by pre-rolling, Prog. Nat. Sci. Mater. Int., 29(2019), No. 2, p. 231. doi: 10.1016/j.pnsc.2019.03.008
    [3]
    Q.H. Wang, S.Y. Chen, B. Jiang, Z.Y. Jin, L.Y. Zhao, J.J. He, D.F. Zhang, G.S. Huang, and F.S. Pan, Grain size dependence of annealing strengthening of an extruded Mg–Gd–Zn alloy subjected to pre-compression deformation, J. Magnes. Alloys, (2021). DOI: 10.1016/j.jma.2021.03.015
    [4]
    H.H. Yu, Y.C. Xin, M.Y. Wang, and Q. Liu, Hall-Petch relationship in Mg alloys: A review, J. Mater. Sci. Technol., 34(2018), No. 2, p. 248. doi: 10.1016/j.jmst.2017.07.022
    [5]
    G.Z. Kang and H. Li, Review on cyclic plasticity of magnesium alloys: Experiments and constitutive models, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 567. doi: 10.1007/s12613-020-2216-8
    [6]
    Q.S. Yang, B. Jiang, B. Song, Z.J. Yu, D.W. He, Y.F. Chai, J.Y. Zhang, and F.S. Pan, The effects of orientation control via tension-compression on microstructural evolution and mechanical behavior of AZ31 Mg alloy sheet, J. Magnes. Alloys, 10(2022), No. 2, p. 411. doi: 10.1016/j.jma.2020.08.005
    [7]
    Q. Li, Y.F. Lu, Q. Luo, X.H. Yang, Y. Yang, J. Tan, Z.H. Dong, J. Dang, J.B. Li, Y. Chen, B. Jiang, S.H. Sun, and F.S. Pan, Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials, J. Magnes. Alloys, 9(2021), No. 6, p. 1922. doi: 10.1016/j.jma.2021.10.002
    [8]
    Q.H. Wang, B. Jiang, Y.F. Chai, B. Liu, S.X. Ma, J. Xu, and F.S. Pan, Tailoring the textures and mechanical properties of AZ31 alloy sheets using asymmetric composite extrusion, Mater. Sci. Eng. A, 673(2016), p. 606. doi: 10.1016/j.msea.2016.07.111
    [9]
    Q.S. Yang, B. Jiang, G.Y. Zhou, J.H. Dai, and F.S. Pan, Influence of an asymmetric shear deformation on microstructure evolution and mechanical behavior of AZ31 magnesium alloy sheet, Mater. Sci. Eng. A, 590(2014), p. 440. doi: 10.1016/j.msea.2013.10.045
    [10]
    J. Xu, T.H. Yang, B. Jiang, J.F. Song, J.J. He, Q.H. Wang, Y.F. Chai, G.S. Huang, and F.S. Pan, Improved mechanical properties of Mg–3Al–1Zn alloy sheets by optimizing the extrusion die angles: Microstructural and texture evolution, J. Alloys Compd., 762(2018), p. 719. doi: 10.1016/j.jallcom.2018.05.083
    [11]
    H.T. Kang and T. Ostrom, Mechanical behavior of cast and forged magnesium alloys and their microstructures, Mater. Sci. Eng. A, 490(2008), No. 1-2, p. 52. doi: 10.1016/j.msea.2008.02.030
    [12]
    T.J. Lee and W.J. Kim, The significant effect of adding trace amounts of Ti on the high-temperature deformation behavior of fine-grained Mg–6Al–1Zn magnesium alloys, J. Alloys Compd., 617(2014), p. 352. doi: 10.1016/j.jallcom.2014.07.213
    [13]
    F. Guo, D.F. Zhang, X.S. Yang, L.Y. Jiang, and F.S. Pan, Microstructure and texture evolution of AZ31 magnesium alloy during large strain hot rolling, Trans. Nonferrous Met. Soc. China, 25(2015), No. 1, p. 14. doi: 10.1016/S1003-6326(15)63573-7
    [14]
    B. Song, R.L. Xin, G. Chen, X.Y. Zhang, and Q. Liu, Improving tensile and compressive properties of magnesium alloy plates by pre-cold rolling, Scripta Mater., 66(2012), No. 12, p. 1061. doi: 10.1016/j.scriptamat.2012.02.047
    [15]
    W.J. Kim, H.W. Lee, S.J. Yoo, and Y.B. Park, Texture and mechanical properties of ultrafine-grained Mg–3Al–1Zn alloy sheets prepared by high-ratio differential speed rolling, Mater. Sci. Eng. A, 528(2011), No. 3, p. 874. doi: 10.1016/j.msea.2010.09.007
    [16]
    M.T. Pérez-Prado, J.A. del Valle, and O.A. Ruano, Achieving high strength in commercial Mg cast alloys through large strain rolling, Mater. Lett., 59(2005), No. 26, p. 3299. doi: 10.1016/j.matlet.2005.04.061
    [17]
    Y.F. Chai, Y. Song, B. Jiang, J. Fu, Z.T. Jiang, Q.S. Yang, H.R. Sheng, G.S. Huang, D.F. Zhang, and F.S. Pan, Comparison of microstructures and mechanical properties of composite extruded AZ31 sheets, J. Magnes. Alloys, 7(2019), No. 4, p. 545. doi: 10.1016/j.jma.2019.09.007
    [18]
    H.C. Pan, G.W. Qin, Y.M. Huang, Y.P. Ren, X.C. Sha, X.D. Han, Z.Q. Liu, C.F. Li, X.L. Wu, H.W. Chen, C. He, L.J. Chai, Y.Z. Wang, and J.F. Nie, Development of low-alloyed and rare-earth-free magnesium alloys having ultra-high strength, Acta Mater., 149(2018), p. 350. doi: 10.1016/j.actamat.2018.03.002
    [19]
    F.S. Pan, Q.H. Wang, B. Jiang, J.J. He, Y.F. Chai, and J. Xu, An effective approach called the composite extrusion to improve the mechanical properties of AZ31 magnesium alloy sheets, Mater. Sci. Eng. A, 655(2016), p. 339. doi: 10.1016/j.msea.2015.12.098
    [20]
    J.J. He, B. Jiang, H.M. Xie, Z.T. Jiang, B. Liu, and F.S. Pan, Improved tension-compression performance of Mg-Al-Zn alloy processed by co-extrusion, Mater. Sci. Eng. A, 675(2016), p. 76. doi: 10.1016/j.msea.2016.08.047
    [21]
    J. Xu, B. Jiang, J.F. Song, J.J. He, P. Gao, W.J. Liu, T.H. Yang, G.S. Huang, and F.S. Pan, Unusual texture formation in Mg–3Al–1Zn alloy sheets processed by slope extrusion, Mater. Sci. Eng. A, 732(2018), p. 1. doi: 10.1016/j.msea.2018.06.100
    [22]
    L.W. Lu, C.M. Liu, J. Zhao, W.B. Zeng, and Z.C. Wang, Modification of grain refinement and texture in AZ31 Mg alloy by a new plastic deformation method, J. Alloys Compd., 628(2015), p. 130. doi: 10.1016/j.jallcom.2014.12.196
    [23]
    Q.S. Yang, B. Jiang, Y. Tian, W.J. Liu, and F.S. Pan, A tilted weak texture processed by an asymmetric extrusion for magnesium alloy sheets, Mater. Lett., 100(2013), p. 29. doi: 10.1016/j.matlet.2013.02.118
    [24]
    D. Wu, W.N. Tang, R.S. Chen, and E.H. Han, Strength enhancement of Mg–3Gd–1Zn alloy by cold rolling, Trans. Nonferrous Met. Soc. China, 23(2013), No. 2, p. 301. doi: 10.1016/S1003-6326(13)62461-9
    [25]
    Y.F. Chai, B. Jiang, J.F. Song, Q.H. Wang, H. Gao, B. Liu, G.S. Huang, D.F. Zhang, and F.S. Pan, Improvement of mechanical properties and reduction of yield asymmetry of extruded Mg–Sn–Zn alloy through Ca addition, J. Alloys Compd., 782(2019), p. 1076. doi: 10.1016/j.jallcom.2018.12.109
    [26]
    T. Hu, W.L. Xiao, F. Wang, Y. Li, S.Y. Lyu, R.X. Zheng, and C.L. Ma, Improving tensile properties of Mg–Sn–Zn magnesium alloy sheets using pre-tension and ageing treatment, J. Alloys Compd., 735(2018), p. 1494. doi: 10.1016/j.jallcom.2017.11.220
    [27]
    W.L. Cheng, Q.W. Tian, H. Yu, H. Zhang, and B.S. You, Strengthening mechanisms of indirect-extruded Mg–Sn based alloys at room temperature, J. Magnes. Alloys, 2(2014), No. 4, p. 299. doi: 10.1016/j.jma.2014.11.003
    [28]
    B.Q. Shi, R.S. Chen, and W. Ke, Solid solution strengthening in polycrystals of Mg–Sn binary alloys, J. Alloys Compd., 509(2011), No. 7, p. 3357. doi: 10.1016/j.jallcom.2010.12.065
    [29]
    S.X. Ding, W.T. Lee, C.P. Chang, L.W. Chang, and P.W. Kao, Improvement of strength of magnesium alloy processed by equal channel angular extrusion, Scripta. Mater., 59(2008), No. 9, p. 1006. doi: 10.1016/j.scriptamat.2008.07.007
    [30]
    J.B. Liu, K. Zhang, J.T. Han, X.G. Li, Y.J. Li, M.L. Ma, J.W. Yuan, and G.L. Shi, Microstructure and texture evolution of Mg–7Y–1Nd–0.5Zr alloy sheets with different rolling temperatures, Rare Met., 39(2020), No. 11, p. 1273. doi: 10.1007/s12598-016-0740-5
    [31]
    K. Liu, J.T. Liang, W.B. Du, S.B. Li, Z.H. Wang, Z.J. Yu, and J.X. Liu, Microstructure, mechanical properties and stretch formability of as-rolled Mg alloys with Zn and Er additions, Rare Met., 40(2021), No. 8, p. 2179. doi: 10.1007/s12598-020-01438-w
    [32]
    L.L. Chang, J.H. Cho, and S.K. Kang, Microstructure and mechanical properties of twin roll cast AM31 magnesium alloy sheet processed by differential speed rolling, Mater. Des., 34(2012), p. 746. doi: 10.1016/j.matdes.2011.06.060
    [33]
    J. Zhao, B. Jiang, Q.H. Wang, M. Yuan, Y.F. Chai, G.S. Huang, and F.S. Pan, Effects of Li addition on the microstructure and tensile properties of the extruded Mg–1Zn–xLi alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1380. doi: doi.org/10.1007/s12613-021-2340-0
    [34]
    Q.W. Dai, D.F. Zhang, and X. Chen, On the anisotropic deformation of AZ31 Mg alloy under compression, Mater. Des., 32(2011), No. 10, p. 5004. doi: 10.1016/j.matdes.2011.06.017
    [35]
    Q.H. Wang, B. Jiang, A.T. Tang, S.X. Ma, Z.T. Jiang, Y.F. Chai, B. Liu, and F.S. Pan, Ameliorating the mechanical properties of magnesium alloy: Role of texture, Mater. Sci. Eng. A, 689(2017), p. 395. doi: 10.1016/j.msea.2017.02.067
    [36]
    C. He, Y.B. Zhang, M. Yuan, B. Jiang, Q.H. Wang, Y.F. Chai, G.S. Huang, D.F. Zhang, and F.S. Pan, Improving the room-temperature bendability of Mg–3Al–1Zn alloy sheet by introducing a bimodal microstructure and the texture re-orientation, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1322. doi: doi.org/10.1007/s12613-021-2384-1
    [37]
    Q.H. Wang, B. Jiang, D.L. Chen, Z.Y. Jin, L.Y. Zhao, Q.S. Yang, G.S. Huang, and F.S. Pan, Strategies for enhancing the room-temperature stretch formability of magnesium alloy sheets: A review, J. Mater. Sci., 56(2021), No. 23, p. 12965. doi: 10.1007/s10853-021-06067-x
    [38]
    J.F. Song, J. Chen, X.M. Xiong, X.D. Peng, D.L. Chen, and F.S. Pan, Research advances of magnesium and magnesium alloys worldwide in 2021, J. Magnes. Alloys, (2022). DOI: 10.1016/j.jma.2022.04.001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Share Article

    Article Metrics

    Article Views(1563) PDF Downloads(78) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return