Langping Zhu, Yu Pan, Yanjun Liu, Zhiyu Sun, Xiangning Wang, Hai Nan, Muhammad-Arif Mughal, Dong Lu,  and Xin Lu, Effects of microstructure characteristics on the tensile properties and fracture toughness of TA15 alloy fabricated by hot isostatic pressing, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 697-706. https://doi.org/10.1007/s12613-021-2371-6
Cite this article as:
Langping Zhu, Yu Pan, Yanjun Liu, Zhiyu Sun, Xiangning Wang, Hai Nan, Muhammad-Arif Mughal, Dong Lu,  and Xin Lu, Effects of microstructure characteristics on the tensile properties and fracture toughness of TA15 alloy fabricated by hot isostatic pressing, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 697-706. https://doi.org/10.1007/s12613-021-2371-6
Research Article

Effects of microstructure characteristics on the tensile properties and fracture toughness of TA15 alloy fabricated by hot isostatic pressing

+ Author Affiliations
  • Corresponding author:

    Xin Lu    E-mail: luxin@ustb.edu.cn

  • Received: 8 August 2021Revised: 26 October 2021Accepted: 1 November 2021Available online: 4 November 2021
  • Powder hot isostatic pressing (HIP) is an effective method to achieve near-net-shape manufacturing of high-quality complex thin-walled titanium alloy parts, and it has received extensive attention in recent years. However, there are few reports about the microstructure characteristics on the strengthening and toughening mechanisms of powder hot isostatic pressed (HIPed) titanium alloys. Therefore, TA15 powder was prepared into alloy by HIP approach, which was used to explore the microstructure characteristics at different HIP temperatures and the corresponding tensile properties and fracture toughness. Results show that the fabricated alloy has a “basket-like structure” when the HIP temperature is below 950°C, consisting of lath clusters and surrounding small equiaxed grains belts. When the HIP temperature is higher than 950°C, the microstructure gradually transforms into the Widmanstatten structure, accompanied by a significant increase in grain size. The tensile strength and elongation are reduced from 948 MPa and 17.3% for the 910°C specimen to 861 MPa and 10% for the 970°C specimen. The corresponding tensile fracture mode changes from transcrystalline plastic fracture to mixed fracture including intercrystalline cleavage. The fracture toughness of the specimens increases from 82.64 MPa·m1/2 for the 910°C specimen to 140.18 MPa·m1/2 for the 970°C specimen. Specimens below 950°C tend to form holes due to the prior particle boundaries (PPBs), which is not conducive to toughening. Specimens above 950°C have high fracture toughness due to the crack deflection, crack branching, and shear plastic deformation of the Widmanstatten structure. This study provides a valid reference for the development of powder HIPed titanium alloy.
  • loading
  • [1]
    L. Xu, R.P. Guo, Z.Y. Chen, Q. Jia, and Q.J. Wang, Mechanical property of powder compact and forming of large thin-wall cylindrical structure of Ti55 alloys, Chin. J. Mater. Res., 30(2016), No. 1, p. 23.
    [2]
    R. Baccino, F. Moret, F. Pellerin, D. Guichard, and G. Raisson, High performance and high complexity net shape parts for gas turbines: The ISOPREC® powder metallurgy process, Mater. Des., 21(2000), No. 4, p. 345. doi: 10.1016/S0261-3069(99)00093-X
    [3]
    Y. Pan, X. Lu, C.C. Liu, T.L. Hui, C. Zhang, and X.H. Qu, Sintering densification, microstructure and mechanical properties of Sn-doped high Nb-containing TiAl alloys fabricated by pressureless sintering, Intermetallics, 125(2020), art. No. 106891. doi: 10.1016/j.intermet.2020.106891
    [4]
    X. Lu, Y. Pan, W.B. Li, M.D. Hayat, F. Yang, H. Singh, W.W. Song, X.H. Qu, Y. Xu, and P. Cao, High-performance Ti composites reinforced with in situ TiC derived from pyrolysis of polycarbosilane, Mater. Sci. Eng. A, 795(2020), art. No. 139924. doi: 10.1016/j.msea.2020.139924
    [5]
    X.H. Qu, G.Q. Zhang, and L. Zhang, Applications of powder metallurgy technologies in aero-engines, J. Aeronaut. Mater., 34(2014), No. 1, p. 1.
    [6]
    N.R. Moody, W.M. Garrison, J.E. Smugeresky, and J.E. Costa, The role of inclusion and pore content on the fracture toughness of powder-processed blended elemental titanium alloys, Metall. Trans. A, 24(1993), No. 1, p. 161. doi: 10.1007/BF02669613
    [7]
    Y. Pan, W.B. Li, X. Lu, M.D. Hayat, L. Yin, W.W. Song, X.H. Qu, and P. Cao, Microstructure and tribological properties of titanium matrix composites reinforced with in situ synthesized TiC particles, Mater. Charact., 170(2020), art. No. 110633. doi: 10.1016/j.matchar.2020.110633
    [8]
    Y. Pan, W.B. Li, X. Lu, Y.C. Yang, Y.J. Liu, T.L. Hui, and X.H. Qu, Microstructure and mechanical properties of polycarbosilane in-situ reinforced titanium matrix composites, Rare Met. Mater. Eng., 49(2020), No. 4, p. 1345.
    [9]
    M.E. Launey and R.O. Ritchie, On the fracture toughness of advanced materials, Adv. Mater., 21(2009), No. 20, p. 2103. doi: 10.1002/adma.200803322
    [10]
    C.S. Tan, Y.D. Fan, Q.Y. Sun, and G.J. Zhang, Improvement of the crack propagation resistance in an α + β titanium alloy with a trimodal microstructure, Metals, 10(2020), No. 8, art. No. 1058. doi: 10.3390/met10081058
    [11]
    M. Niinomi and T. Kobayashi, Fracture characteristics analysis related to the microstructures in titanium alloys, Mater. Sci. Eng. A, 213(1996), No. 1-2, p. 16. doi: 10.1016/0921-5093(96)10239-2
    [12]
    F. Cao, Fatigue Behavior and Mechanisms in Powder Metallurgy Ti–6Al–4V Titanium Alloy [Dissertation], The University of Utah, Salt Lake City, 2016.
    [13]
    H. Singh, M. Hayat, H.Z. Zhang, R. Das, and P. Cao, Effect of TiB2 content on microstructure and properties of in situ Ti–TiB composites, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 915. doi: 10.1007/s12613-019-1797-6
    [14]
    L. Wang, Z.B. Lang, and H.P. Shi, Properties and forming process of prealloyed powder metallurgy Ti6Al4V alloy, Trans. Nonferrous Met. Soc. China, 17(2007), Suppl. 1, p. s639.
    [15]
    A.A. Hidalgo, R. Frykholm, T. Ebel, and F. Pyczak, Powder metallurgy strategies to improve properties and processing of titanium alloys: A review, Adv. Eng. Mater., 19(2017), No. 6, art. No. 1600743. doi: 10.1002/adem.201600743
    [16]
    J.W. Xu, W.D. Zeng, D.D. Zhou, H.Y. Ma, W. Chen, and S.T. He, Influence of alpha/beta processing on fracture toughness for a two-phase titanium alloy, Mater. Sci. Eng. A, 731(2018), p. 85. doi: 10.1016/j.msea.2018.06.035
    [17]
    M. Niinomi and T. Kobayashi, Toughness and strength of microstructurally controlled titanium alloys, ISIJ Int., 31(1991), No. 8, p. 848. doi: 10.2355/isijinternational.31.848
    [18]
    X. Wen, M.P. Wan, C.W. Huang, and M. Lei, Strength and fracture toughness of TC21 alloy with multi-level lamellar microstructure, Mater. Sci. Eng. A, 740-741(2019), p. 121. doi: 10.1016/j.msea.2018.10.056
    [19]
    R.P. Guo, L. Xu, J. Wu, R. Yang, and B.Y. Zong, Microstructural evolution and mechanical properties of powder metallurgy Ti–6Al–4V alloy based on heat response, Mater. Sci. Eng. A, 639(2015), p. 327. doi: 10.1016/j.msea.2015.05.041
    [20]
    H.W. Wang, Z.J. Guo, and J. Wang, Study on microstructure and fracture toughness of TA15 alloy, Rare Met. Mater. Eng., 34(2005), Suppl. 3, p. 293.
    [21]
    H.E. Dève, A.G. Evens, and D.S. Shih, A high-toughness γ-titanium aluminide, Acta Metall. Mater., 40(1992), No. 6, p. 1259. doi: 10.1016/0956-7151(92)90425-E
    [22]
    K. Zhang, J. Mei, N. Wain, and X. Wu, Effect of hot-isostatic-pressing parameters on the microstructure and properties of powder Ti6Al4V hot-isostatically-pressed samples, Metall. Mater. Trans. A, 41(2010), No. 4, p. 1033. doi: 10.1007/s11661-009-0149-y
    [23]
    C. Cai, B. Song, P.J. Xue, Q.S. Wei, C.Z. Yan, and Y.S. Shi, A novel near α-Ti alloy prepared by hot isostatic pressing: Microstructure evolution mechanism and high temperature tensile properties, Mater. Des., 106(2016), p. 371. doi: 10.1016/j.matdes.2016.05.092
    [24]
    R.P. Guo, L. Xu, Z.Y. Chen, Q.J. Wang, B.Y. Zong, and R. Yang, Effect of powder surface state on microstructure and tensile properties of a novel near α-Ti alloy using hot isostatic pressing, Mater. Sci. Eng. A, 706(2017), p. 57. doi: 10.1016/j.msea.2017.08.096
    [25]
    Q. Wang, Z. Wen, C. Jiang, B. Wang, and D.Q. Yi, Creep behaviour of TA15 alloy at elevated temperature, Mater. Sci. Eng. Powder Metall., 19(2014), No. 2, p. 171.
    [26]
    S.K. Li, S.X. Hui, W.J. Ye, Y. Yu, and B.Q. Xiong, Effects of microstructure on damage tolerance properties of TA15 ELI titanium alloy, Chin. J. Nonferrous Met., 17(2007), No. 7, p. 1119.
    [27]
    J.P. Hirth and F.H. Froes, Interrelations between fracture toughness and other mechanical properties in titanium alloys, Metall. Trans. A, 8(1977), No. 7, p. 1165. doi: 10.1007/BF02667402
    [28]
    F.W. Chen, Y.L. Gu, G.L. Xu, Y.W. Cui, H. Chang, and L. Zhou, Improved fracture toughness by microalloying of Fe in Ti6Al4V, Mater. Des., 185(2020), art. No. 108251. doi: 10.1016/j.matdes.2019.108251
    [29]
    Z.F. Shi, H.Z. Guo, J.W. Zhang, and J.N. Yin, Microstructure–fracture toughness relationships and toughening mechanism of TC21 titanium alloy with lamellar microstructure, Trans. Nonferrous Met. Soc. China, 28(2018), No. 12, p. 2440. doi: 10.1016/S1003-6326(18)64890-3
    [30]
    A. Ghosh, S. Sivaprasad, A. Bhattacharjee, and S.K. Kar, Microstructurefracture toughness correlation in an aircraft structural component alloy Ti5Al5V5Mo3Cr, Mater. Sci. Eng. A, 568(2013), p. 61. doi: 10.1016/j.msea.2013.01.017
    [31]
    N.L. Richards, Quantitative evaluation of fracture toughnessmicrostructural relationships in alphabeta titanium alloys, J. Mater. Eng. Perform., 13(2004), No. 2, p. 218. doi: 10.1361/10599490418424
    [32]
    X.H. Shi, W.D. Zeng, and Q.Y. Zhao, The effects of lamellar features on the fracture toughness of Ti-17 titanium alloy, Mater. Sci. Eng. A, 636(2015), p. 543. doi: 10.1016/j.msea.2015.04.021
    [33]
    T. Horiya, H.G. Suzuki, and T. Kishi, Effect of microstructure and impurity content on microcrack initiation and extension properties of Ti6Al4V alloys, Tetsu-to-Hagane, 75(1989), No. 12, p. 2250. doi: 10.2355/tetsutohagane1955.75.12_2250
    [34]
    Y. Kawabe and S. Muneki, Strengthening and toughening of titanium alloys, ISIJ Int., 31(1991), No. 8, p. 785. doi: 10.2355/isijinternational.31.785
    [35]
    N.L. Richards, Prediction of crack deflection in titanium alloys with a platelet microstructure, J. Mater. Eng. Perform., 14(2005), No. 1, p. 91. doi: 10.1361/10599490522176
    [36]
    Q.L. Zhang and X.W. Li, Effect of structure on fatigue properties and fracture toughness for TA15 titanium alloy, J. Mater. Eng., 2007, No. 7, p. 3.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(1285) PDF Downloads(90) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return