Cite this article as: |
Jiazhi An, Zhaozhen Cai, and Miaoyong Zhu, Effect of titanium content on the refinement of coarse columnar austenite grains during the solidification of peritectic steel, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2172-2180. https://doi.org/10.1007/s12613-021-2375-2 |
Zhaozhen Cai E-mail: caizz@smm.neu.edu.cn
Miaoyong Zhu E-mail: myzhu@mail.neu.edu.cn
[1] |
M. Ohno, S. Tsuchiya, and K. Matsuura, Microstructural features and formation processes of as-cast austenite grain structures in hypoperitectic carbon steels, ISIJ Int., 55(2015), No. 11, p. 2374. doi: 10.2355/isijinternational.ISIJINT-2015-240
|
[2] |
H. T. Tasi, H. Yin, M. Lowry and S. Morales, Analysis of transverse corner cracks on slabs and countermeasures, Iron Steel Technol., 3(2006), p. 23.
|
[3] |
B. Mintz and J.M. Arrowsmith, Hot-ductility behaviour of C–Mn–Nb–Al steels and its relationship to crack propagation during the straightening of continuously cast strand, Met. Technol., 6(1979), No. 1, p. 24. doi: 10.1179/030716979803276471
|
[4] |
H. Yasuda, T. Suga, K. Ichida, T. Narumi, and K. Morishita, In situ observation of austenite coarsening induced by massive-like transformation during solidification in Fe–C alloys, IOP Conf. Ser.: Mater. Sci. Eng., 861(2020), No. 1, art. No. 012051. doi: 10.1088/1757-899X/861/1/012051
|
[5] |
G. Azizi, B.G. Thomas, and M. Asle Zaeem, Review of peritectic solidification mechanisms and effects in steel casting, Metall. Mater. Trans. B, 51(2020), No. 5, p. 1875. doi: 10.1007/s11663-020-01942-5
|
[6] |
N.S. POttore, C.I. Garcia, and A.J. DeArdo, Interrupted and isothermal solidification studies of low and medium carbon steels, Metall. Trans. A, 22(1991), No. 8, p. 1871. doi: 10.1007/BF02646512
|
[7] |
T. Maruyama, K. Matsuura, M. Kudoh, and Y. Itoh, Peritectic transformation and austenite grain formation for hyper-peritectic carbon steel, Tetsu-to-Hagane, 85(1999), No. 8, p. 585. doi: 10.2355/tetsutohagane1955.85.8_585
|
[8] |
N. Yoshida, O. Umezawa, and K. Nagai, Analysis on refinement of columnar γ grain by phosphorus in continuously cast 0.1 mass% carbon steel, ISIJ Int., 44(2004), No. 3, p. 547. doi: 10.2355/isijinternational.44.547
|
[9] |
S. Tsuchiya, M. Ohno, K. Matsuura, and K. Isobe, Formation mechanism of coarse columnar γ grains in as-cast hyperperitectic carbon steels, Acta Mater., 59(2011), No. 9, p. 3334. doi: 10.1016/j.actamat.2011.02.007
|
[10] |
M. Ohno, S. Tsuchiya, and K. Matsuura, Formation conditions of coarse columnar austenite grain structure in peritectic carbon steels by the discontinuous grain growth mechanism, Acta Mater., 59(2011), No. 14, p. 5700. doi: 10.1016/j.actamat.2011.05.045
|
[11] |
S. Kencana, M. Ohno, K. Matsuura, and K. Isobe, Effects of Al and P additions on as-cast austenite grain structure in 0.2 mass% carbon steel, ISIJ Int., 50(2010), No. 12, p. 1965. doi: 10.2355/isijinternational.50.1965
|
[12] |
S. Tsuchiya, M. Ohno, K. Matsuura, and K. Isobe, Effects of Cr addition on coarse columnar austenite structure in as-cast 0.2 mass% carbon steel, ISIJ Int., 50(2010), No. 12, p. 1959. doi: 10.2355/isijinternational.50.1959
|
[13] |
Y.L. Wang, Y.L. Chen, and W. Yu, Effect of Cr/Mn segregation on pearlite–martensite banded structure of high carbon bearing steel, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 665. doi: 10.1007/s12613-020-2035-y
|
[14] |
S.F. Medina, M. Chapa, P. Valles, A. Quispe, and M.I. Vega, Influence of Ti and N contents on austenite grain control and precipitate size in structural steels, ISIJ Int., 39(1999), No. 9, p. 930. doi: 10.2355/isijinternational.39.930
|
[15] |
X.L. Wan, K.M. Wu, G. Huang, R. Wei, and L. Cheng, In situ observation of austenite grain growth behavior in the simulated coarse-grained heat-affected zone of Ti-microalloyed steels, Int. J. Miner. Metall. Mater., 21(2014), No. 9, p. 878. doi: 10.1007/s12613-014-0984-8
|
[16] |
B. Feng, T. Chandra, and D.P. Dunne, Effect of alloy nitride particle size distribution on austenite grain coarsening in Ti and Ti–Nb bearing HSLA steels, Mater. Forum, 13(1989), No. 2, p. 139.
|
[17] |
R. Vaz Penna, L.N. Bartlett, and R. O’Malley, Influence of TiN additions on the microstructure of a lightweight Fe–Mn–Al steel, Int. J. Metalcast., 14(2020), No. 2, p. 342. doi: 10.1007/s40962-019-00373-6
|
[18] |
A. Graux, S. Cazottes, D. de Castro, D. San Martín, C. Capdevila, J.M. Cabrera, S. Molas, S. Schreiber, D. Mirković, F. Danoix, M. Bugnet, D. Fabrègue, and M. Perez, Precipitation and grain growth modelling in Ti–Nb microalloyed steels, Materialia, 5(2019), art. No. 100233. doi: 10.1016/j.mtla.2019.100233
|
[19] |
R. Wei, C.J. Shang, and K.M. Wu, Grain refinement in the coarse-grained region of the heat-affected zone in low-carbon high-strength microalloyed steels, Int. J. Miner. Metall. Mater., 17(2010), No. 6, p. 737. doi: 10.1007/s12613-010-0382-9
|
[20] |
M. Ohno and K. Matsuura, Refinement of as-cast austenite microstructure in S45C steel by titanium addition, ISIJ Int., 48(2008), No. 10, p. 1373. doi: 10.2355/isijinternational.48.1373
|
[21] |
S. Tsuchiya, M. Ohno, and K. Matsuura, Transition of solidification mode and the as-cast γ grain structure in hyperperitectic carbon steels, Acta Mater., 60(2012), No. 6-7, p. 2927. doi: 10.1016/j.actamat.2012.01.056
|
[22] |
Y. Maehara, K. Yasumoto, Y. Sugitani, and K. Gunji, Effect of carbon on hot ductility of as-cast low alloy steels, ISIJ Int., 25(1985), No. 10, p. 1045. doi: 10.2355/isijinternational1966.25.1045
|
[23] |
L.T. Gui, M.J. Long, H.H. Zhang, D.F. Chen, S. Liu, Q.Z. Wang, and H.M. Duan, Study on the precipitation and coarsening of TiN inclusions in Ti-microalloyed steel by a modified coupling model, J. Mater. Res. Technol., 9(2020), No. 3, p. 5499. doi: 10.1016/j.jmrt.2020.03.075
|
[24] |
Y. Huang, W.N. Liu, A.M. Zhao, J.K. Han, Z.G. Wang, and H.X. Yin, Effect of Mo content on the thermal stability of Ti–Mo-bearing ferritic steel, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 412. doi: 10.1007/s12613-020-2045-9
|
[25] |
T. Kato, Y. Ito, M. Kawamoto, A. Yamanaka, and T. Watanabe, Prevention of slab surface transverse cracking by microstructure control, ISIJ Int., 43(2003), No. 11, p. 1742. doi: 10.2355/isijinternational.43.1742
|
[26] |
I. Andersen and Ø. Grong, Analytical modelling of grain growth in metals and alloys in the presence of growing and dissolving precipitates—I. Normal grain growth, Acta Metall. Mater., 43(1995), No. 7, p. 2673. doi: 10.1016/0956-7151(94)00488-4
|
[27] |
G.E. Pellissier and S.M. Purdy, Stereology and Quantitative Metallography, American Society for Testing and Materals, Easton, 1972.
|