Jinfa Liao and Baojun Zhao, Phase equilibrium studies of titanomagnetite and ilmenite smelting slags, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2162-2171. https://doi.org/10.1007/s12613-021-2376-1
Cite this article as:
Jinfa Liao and Baojun Zhao, Phase equilibrium studies of titanomagnetite and ilmenite smelting slags, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2162-2171. https://doi.org/10.1007/s12613-021-2376-1
Research Article

Phase equilibrium studies of titanomagnetite and ilmenite smelting slags

+ Author Affiliations
  • Corresponding author:

    Baojun Zhao    E-mail: bzhao@jxust.edu.cn

  • Received: 18 August 2021Revised: 3 November 2021Accepted: 8 November 2021Available online: 9 November 2021
  • The phase equilibrium information of slag plays an important role in pyrometallurgical processes to obtain optimum fluxing conditions and operating temperatures. The smelting reduction of titanomagnetite and ilmenite ores in an iron blast furnace (BF) can form Ti(C,N) particles, causing the increased viscosities of slag and hot metal. HIsmelt has been developed in recent years for ironmaking and does not need coke and sinter. The formation of Ti(C,N) in the HIsmelt process is avoided because the oxygen partial pressure in the process is higher than that in the BF. The smelting of TiO2-containing ores in the HIsmelt process results in Al2O3–MgO–SiO2–CaO–TiO2 slag. Phase equilibrium in this slag system has been investigated using equilibration, quenching, and electron probe microanalysis techniques. The experimental results were presented in two pseudo-binary sections, which represent the process of HIsmelt for the treatment of 100% titanomagnetite ore and mixed titanomagnetite+ilmenite ore (mass ratio of 2:1), respectively. The primary phases observed in the composition range investigated include pseudo-brookite M3O5 (MgO·2TiO2–Al2O3·TiO2), spinel (MgO·Al2O3), perovskite CaTiO3, and rutile TiO2. The results show that the liquidus temperatures decrease in the TiO2 and M3O5 primary phase fields and increase in the spinel and CaTiO3 primary phase fields with the increase in CaO concentration. The calculation of solid-phase fractions from the experimental data has been demonstrated. The effect of basicity on the liquidus temperatures of the slag has been discussed. The smelting of titanomagnetite plus ilmenite ores has significant advantages to obtain low-sulfur hot metal and high-TiO2 slag. Experimentally determined liquidus temperatures were compared with the FactSage predictions to evaluate the existing thermodynamic databases.
  • loading
  • [1]
    H.T. Wang, W. Zhao, M.S. Chu, C. Feng, Z.G. Liu, and J. Tang, Current status and development trends of innovative blast furnace ironmaking technologies aimed to environmental harmony and operation intellectualization, J. Iron Steel Res. Int., 24(2017), No. 8, p. 751. doi: 10.1016/S1006-706X(17)30115-2
    [2]
    E. Mousa, Modern blast furnace ironmaking technology: Potentials to meet the demand of high hot metal production and lower energy consumption, Metall. Mater. Eng., 25(2019), No. 2, p. 69. doi: 10.30544/414
    [3]
    R.S. Diao, New understanding about special problems of smelting vanadium bearing titanomagnetite with BF, Iron Steel, 34(1999), No. 6, p. 12.
    [4]
    Z.D. Pang, Y.Y. Jiang, J.W. Ling, X.W. Lü, and Z.M. Yan, Blast furnace ironmaking process with super high TiO2 in the slag: Density and surface tension of the slag, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1170. doi: 10.1007/s12613-021-2262-x
    [5]
    J. Sun, S. Wang, M.S. Chu, et al., Titanium distribution between blast furnace slag and iron for blast furnace linings protection, Ironmaking Steelmaking, 47(2020), No. 5, p. 545. doi: 10.1080/03019233.2018.1557847
    [6]
    K.X. Jiao, J.L. Zhang, Z.J. Liu, S.B. Kuang, and Y.X. Liu, Dissection investigation of Ti(C,N) behavior in blast furnace hearth during vanadium titano-magnetite smelting, ISIJ Int., 57(2017), No. 1, p. 48. doi: 10.2355/isijinternational.ISIJINT-2016-419
    [7]
    G.H. Zhang, Y.L. Zhen, and K.C. Chou, Influence of TiC on the viscosity of CaO–MgO–Al2O3–SiO2–TiC suspension system, ISIJ Int., 55(2015), No. 5, p. 922. doi: 10.2355/isijinternational.55.922
    [8]
    S. Wang, M. Chen, Y.F. Guo, T. Jiang, and B.J. Zhao, Reduction and smelting of vanadium titanomagnetite metallized pellets, JOM, 71(2019), No. 3, p. 1144. doi: 10.1007/s11837-018-2863-7
    [9]
    S. Wang, M. Chen, Y.F. Guo, T. Jiang, and B.J. Zhao, Comparison of phase equilibria between FactSage predictions and experimental results in titanium oxide-containing system, Calphad, 63(2018), p. 77. doi: 10.1016/j.calphad.2018.09.001
    [10]
    D. Xie, Y. Mao, and Y. Zhu, Viscosity and flow behaviour of TiO2-containing blast furnace slags under reducing conditions, [in] 7th International Conference on Molten Slags, Fluxes and Salts, Cape Town, 2004, p. 43.
    [11]
    K.X. Jiao, J.L. Zhang, Z.Y. Wang, C.L. Chen, and Y.X. Liu, Effect of TiO2 and FeO on the viscosity and structure of blast furnace primary slags, Steel Res. Int., 88(2017), No. 5, art. No. 1600296. doi: 10.1002/srin.201600296
    [12]
    K.X. Jiao, J.L. Zhang, Z.J. Liu, C.L. Chen, and Y.X. Liu, Analysis of blast furnace hearth sidewall erosion and protective layer formation, ISIJ Int., 56(2016), No. 11, p. 1956. doi: 10.2355/isijinternational.ISIJINT-2016-168
    [13]
    C. Liu, Y.Z. Zhang, K. Zhao, H.W. Xing, and Y. Kang, Modified biomass fuel instead of coke for iron ore sintering, Ironmaking Steelmaking, 47(2020), No. 2, p. 188. doi: 10.1080/03019233.2018.1507070
    [14]
    X. Zhang, Q. Zhong, C. Liu, et al., Partial substitution of anthracite for coke breeze in iron ore sintering, Sci. Rep., 11(2021), art. No. 1540. doi: 10.1038/s41598-021-80992-4
    [15]
    J.L. Zhang, G.Q. Zhang, Z.J. Liu, Z.H. Wang, K.J. Li, and X.B. Zhang, Production overview and main characteristics of HIsmelt process in Shandong Molong, China Metall., 28(2018), No. 5, p. 37.
    [16]
    H.B. Ma, K.X. Jiao, J.L. Zhang, Y.B. Zong, J. Zhang, and S. Meng, Viscosity of CaO–MgO–Al2O3–SiO2–TiO2–FeO slag with varying TiO2 content: The effect of crystallization on viscosity abrupt behavior, Ceram. Int., 47(2021), No. 12, p. 17445. doi: 10.1016/j.ceramint.2021.03.061
    [17]
    X.Y. Zhang, K.X. Jiao, J.L. Zhang, and Z.Y. Guo, A review on low carbon emissions projects of steel industry in the world, J. Clean. Prod., 306(2021), art. No. 127259. doi: 10.1016/j.jclepro.2021.127259
    [18]
    C.Z. Cao, Y.J. Meng, F.X. Yan, D.W. Zhang, X. Li, and F.M. Zhang, Analysis on energy efficiency and optimization of HIsmelt process, [in] T. Wang, X.B Chen, D.P. Guillen, et al. eds., Energy Technology 2019. The Minerals, Metals & Materials Series., Springer, Cham, 2019, p. 3.
    [19]
    Y.L. Li, H.B. Li, H. Wang, et al., Smelting potential of HIsmelt technology for high-phosphorus iron ore and ilmenite, [in] 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, Changsha, 2011, p. 1283.
    [20]
    E. Heikinheimo, D. Ryzhonkov, and S. Paderin, Iron oxide activity in complex silicate slags, Solid State Ionics, 3-4(1981), p. 541. doi: 10.1016/0167-2738(81)90147-8
    [21]
    C.B. Shi, D.L. Zheng, S.H. Shin, J. Li, and J.W. Cho, Effect of TiO2 on the viscosity and structure of low-fluoride slag used for electroslag remelting of Ti-containing steels, Int. J. Miner. Metall. Mater., 24(2017), No. 1, p. 18. doi: 10.1007/s12613-017-1374-9
    [22]
    L. Zhang, L.N. Zhang, M.Y. Wang, G.Q. Li, and Z.T. Sui, Recovery of titanium compounds from molten Ti-bearing blast furnace slag under the dynamic oxidation condition, Miner. Eng., 20(2007), No. 7, p. 684. doi: 10.1016/j.mineng.2007.01.003
    [23]
    J. Ma, G.Q. Fu, W. Li, and M.Y. Zhu, Influence of TiO2 on the melting property and viscosity of Cr-containing high-Ti melting slag, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 310. doi: 10.1007/s12613-019-1914-6
    [24]
    Z. Wang, H.Y. Sun, and Q.S. Zhu, Effects of the continuous cooling process conditions on the crystallization and liberation characteristics of anosovite in Ti-bearing titanomagnetite smelting slag, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1120. doi: 10.1007/s12613-019-1830-9
    [25]
    J.F. Liao and B.J. Zhao, Phase equilibria study in the system “Fe2O3”–ZnO–Al2O3–(PbO+CaO+SiO2) in air, Calphad, 74(2021), art. No. 102282. doi: 10.1016/j.calphad.2021.102282
    [26]
    J.F. Liao and B.J. Zhao, Experimental studies in phase equilibrium of the system “FeO”–SiO2–MgO–Al2O3–“Cr2O3” at iron saturation, Metall. Mater. Trans. B, 52(2021), No. 4, p. 2364. doi: 10.1007/s11663-021-02195-6
    [27]
    X. Wang, X.D. Ma, K. Su, C.F. Liao, and B.J. Zhao, Fundamental studies for high temperature processing of tungsten leaching residues for alloy formation, Tungsten, 2(2020), No. 4, p. 362. doi: 10.1007/s42864-020-00064-4
    [28]
    S. Wang, Y.F. Guo, F.Q. Zheng, et al., Optimization of basicity of high Ti slag for efficient smelting of vanadium titanomagnetite metallized pellets, Metall. Mater. Trans. B, 51(2020), No. 3, p. 945. doi: 10.1007/s11663-020-01822-y
    [29]
    W.T. Holmes, L.H. Banning, and L.L. Brown, Liquidus Temperatures of Titaniferous Slag (in Three Parts). 1, TiO2–Al2O3–SiO2–CaO–MgO, [in] Report of Investigations, US Department of the Interior, Bureau of Mines, 1968, p. 7081.
    [30]
    L.B. McRae, E. Pothas, P.R. Jochens, and D.D. Howat, Physico-chemical properties of titaniferous slags, J. South. Afr. Inst. Min. Metall., 69(1969), No. 11, p. 557.
    [31]
    I.P. Ratchev and G.R. Belton, A study of the liquidus temperatures of titano-magnetite smelting type slag, [in] Proceedings of the 5th International Conference on Molten Slag, Fluxes and Salts, Sydney, 1997, p. 387.
    [32]
    J.J. Shi, L.F. Sun, B. Zhang, et al, Experimental determination of the phase diagram of the CaO–SiO2–5 pctMgO–10 pctAl2O3–TiO2 system, Metall. Mater. Trans. B, 47(2016), No. 1, p. 425. doi: 10.1007/s11663-015-0527-3
    [33]
    L.F. Sun and J.J. Shi, Effect of Al2O3 addition on the phase equilibria relations of CaO–SiO2–5 wt%MgO–Al2O3–TiO2 system relevant to Ti-bearing blast furnace slag, ISIJ Int., 59(2019), No. 7, p. 1184. doi: 10.2355/isijinternational.ISIJINT-2019-014
    [34]
    J.J. Shi, M. Chen, I. Santoso, et al., 1250°C liquidus for the CaO–MgO–SiO2–Al2O3–TiO2 system in air, Ceram. Int., 46(2020), No. 2, p. 1545. doi: 10.1016/j.ceramint.2019.09.122
    [35]
    C.W. Bale, E. Bélisle, P. Chartrand, et al., FactSage thermochemical software and databases, 2010–2016, Calphad, 54(2016), p. 35. doi: 10.1016/j.calphad.2016.05.002
    [36]
    Z. Wang, Q.S. Zhu, and H.Y. Sun, Phase equilibria in the TiO2-rich part of the TiO2–CaO–SiO2–10 wt pct Al2O3–5 wt pct MgO system at 1773 K, Metall. Mater. Trans. B, 50(2019), No. 1, p. 357. doi: 10.1007/s11663-018-1441-2
    [37]
    G. Handfield and G.G. Charette, Viscosity and structure of industrial high TiO2 slags, Can. Metall. Q., 10(1971), No. 3, p. 235. doi: 10.1179/cmq.1971.10.3.235
    [38]
    X.H. Li, J. Kou, T.C. Sun, S.C. Wu, and Y.Q. Zhao, Effects of calcium compounds on the carbothermic reduction of vanadium titanomagnetite concentrate, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 301. doi: 10.1007/s12613-019-1864-z
    [39]
    X.H. Li, J. Kou, T.C. Sun, S.C. Wu, and Y.Q. Zhao, Formation of calcium titanate in the carbothermic reduction of vanadium titanomagnetite concentrate by adding CaCO3, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 745. doi: 10.1007/s12613-019-1903-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(922) PDF Downloads(57) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return