Qian Zhang, Shuming Wen, Qicheng Feng, and Han Wang, Enhanced sulfidization of azurite surfaces by ammonium phosphate and its effect on flotation, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1150-1160. https://doi.org/10.1007/s12613-021-2379-y
Cite this article as:
Qian Zhang, Shuming Wen, Qicheng Feng, and Han Wang, Enhanced sulfidization of azurite surfaces by ammonium phosphate and its effect on flotation, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1150-1160. https://doi.org/10.1007/s12613-021-2379-y
Research Article

Enhanced sulfidization of azurite surfaces by ammonium phosphate and its effect on flotation

+ Author Affiliations
  • Corresponding author:

    Qicheng Feng    E-mail: fqckmust@163.com

  • Received: 13 August 2021Revised: 28 October 2021Accepted: 8 November 2021Available online: 9 November 2021
  • Although azurite is one of the most important copper oxide minerals, the recovery of this mineral via sulfidization–xanthate flotation is typically unsatisfactory. The present work demonstrated the enhanced sulfidization of azurite surfaces using ammonia phosphate ((NH4)3PO4) together with Na2S, based on micro-flotation experiments, time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS), zeta-potential measurements, contact angle measurements, Fourier-transform infrared (FT-IR) spectroscopy, and ultraviolet–visible (UV–Vis) spectroscopy. Micro-flotation experiments showed that the floatability of azurite was increased following the simultaneous addition of (NH4)3PO4 and Na2S. ToF-SIMS and XPS analyses demonstrated the formation of a high content of S species on the azurite surface and an increase in the number of Cu(I) species after exposure to (NH4)3PO4 and Na2S, compared with the azurite–Na2S system. The zeta potential of azurite particles was negatively shifted and the contact angle on the azurite surface was increased with the addition of (NH4)3PO4 prior to Na2S. These results indicate that treatment with (NH4)3PO4 enhances the sulfidization of azurite surfaces, which in turn promotes xanthate attachment. FT-IR and UV–Vis analyses confirmed that the addition of (NH4)3PO4 increased the adsorption of xanthate with reducing the consumption of xanthate during the azurite flotation process. Thus, (NH4)3PO4 has a beneficial effect on the sulfidization flotation of azurite.
  • loading
  • [1]
    S.H. Yin, W. Chen, X.L. Fan, J.M. Liu, and L.B. Wu, Review and prospects of bioleaching in the Chinese mining industry, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1397. doi: 10.1007/s12613-020-2233-7
    [2]
    E.B. Moustafa and M.A. Taha, Evaluation of the microstructure, thermal and mechanical properties of Cu/SiC nanocomposites fabricated by mechanical alloying, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 475. doi: 10.1007/s12613-020-2176-z
    [3]
    H.Y. Xie, Y.H. Liu, B. Rao, J.Z. Wu, L.K. Gao, L.Z. Chen, and X.S. Tian, Selective passivation behavior of galena surface by sulfuric acid and a novel flotation separation method for copper–lead sulfide ore without collector and inhibitor, Sep. Purif. Technol., 267(2021), art. No. 118621. doi: 10.1016/j.seppur.2021.118621
    [4]
    L.T. Tijsseling, Q. Dehaine, G.K. Rollinson, and H.J. Glass, Flotation of mixed oxide sulphide copper–cobalt minerals using xanthate, dithiophosphate, thiocarbamate and blended collectors, Miner. Eng., 138(2019), p. 246. doi: 10.1016/j.mineng.2019.04.022
    [5]
    X.L. Zhang, J. Kou, C.B. Sun, R.Y. Zhang, M. Su, and S.F. Li, Mineralogical characterization of copper sulfide tailings using automated mineral liberation analysis: A case study of the Chambishi Copper Mine tailings, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 944. doi: 10.1007/s12613-020-2093-1
    [6]
    G.R. Wang, H.Y. Yang, Y.Y. Liu, L.L. Tong, and A. Auwalu, Study on the mechanical activation of malachite and the leaching of complex copper ore in the Luanshya mining area, Zambia, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 292. doi: 10.1007/s12613-019-1856-z
    [7]
    W.Z. Yin and Y. Tang, Interactive effect of minerals on complex ore flotation: A brief review, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 571. doi: 10.1007/s12613-020-1999-y
    [8]
    G. Han, S.M. Wen, H. Wang, and Q.C. Feng, Sulfidization regulation of cuprite by pre-oxidation using sodium hypochlorite as an oxidant, Int. J. Min. Sci. Techno., 31(2021), No. 6, p. 1117. doi: 10.1016/j.ijmst.2021.11.001
    [9]
    J.P. Cai, D.W. Liu, P.L. Shen, X.L. Zhang, K.W. Song, X.D. Jia, and C. Su, Effects of heating-sulfidation on the formation of zinc sulfide species on smithsonite surfaces and its response to flotation, Miner. Eng., 169(2021), art. No. 106956. doi: 10.1016/j.mineng.2021.106956
    [10]
    J.L. Li, S.Y. Liu, D.W. Liu, R.Z. Liu, Z.C. Liu, X.D. Jia, and T.C. Chang, Sulfidization mechanism in the flotation of cerussite: A heterogeneous solid–liquid reaction that yields PbCO3/PbS core–shell particles, Miner. Eng., 153(2020), art. No. 106400. doi: 10.1016/j.mineng.2020.106400
    [11]
    C. Liu, G.L. Zhu, S.X. Song, and H.Q. Li, Interaction of gangue minerals with malachite and implications for the sulfidization flotation of malachite, Colloids Surf. A, 555(2018), p. 679. doi: 10.1016/j.colsurfa.2018.07.045
    [12]
    Z. Li, M. Chen, P.W. Huang, Q.W. Zhang, and S.X. Song, Effect of grinding with sulfur on surface properties and floatability of three nonferrous metal oxides, Trans. Nonferrous Met. Soc. China, 27(2017), No. 11, p. 2474. doi: 10.1016/S1003-6326(17)60274-7
    [13]
    X.B. Min, C.Y. Yuan, Y.J. Liang, L.Y. Chai, and Y. Ke, Metal recovery from sludge through the combination of hydrothermal sulfidation and flotation, Procedia Environ. Sci., 16(2012), p. 401. doi: 10.1016/j.proenv.2012.10.056
    [14]
    D.D. Wu, Y.B. Mao, J.S. Deng, and S.M. Wen, Activation mechanism of ammonium ions on sulfidation of malachite (-201) surface by DFT study, Appl. Surf. Sci., 410(2017), p. 126. doi: 10.1016/j.apsusc.2017.03.058
    [15]
    D.Q. Xing, Y.Q. Huang, C.S. Lin, W.R. Zuo, and R.D. Deng, Strengthening of sulfidization flotation of hemimorphite via fluorine ion modification, Sep. Purif. Technol., 269(2021), art. No. 118769. doi: 10.1016/j.seppur.2021.118769
    [16]
    R.Z. Liu, D.W. Liu, J.L. Li, S.Y. Liu, Z.C. Liu, L.Q. Gao, X.D. Jia, and S.F. Ao, Improved understanding of the sulfidization mechanism in cerussite flotation: An XPS, ToF-SIMS and FESEM investigation, Colloids Surf. A, 595(2020), art. No. 124508. doi: 10.1016/j.colsurfa.2020.124508
    [17]
    Q.C. Feng, W.J. Zhao, S.M. Wen, and Q.B. Cao, Copper sulfide species formed on malachite surfaces in relation to flotation, J. Ind. Eng. Chem., 48(2017), p. 125. doi: 10.1016/j.jiec.2016.12.029
    [18]
    Z.Y. Lan, Z.N. Lai, Y.X. Zheng, J.F. Lv, J. Pang, and J.L. Ning, Thermochemical modification for the surface of smithsonite with sulfur and its flotation response, Miner. Eng., 150(2020), art. No. 106271. doi: 10.1016/j.mineng.2020.106271
    [19]
    Q.C. Feng, W.J. Zhao, and S.M. Wen, Ammonia modification for enhancing adsorption of sulfide species onto malachite surfaces and implications for flotation, J. Alloys Compd., 744(2018), p. 301. doi: 10.1016/j.jallcom.2018.02.056
    [20]
    P.L. Shen, D.W. Liu, X.H. Xu, X.D. Jia, X.L. Zhang, K.W. Song, and J.P. Cai, Effects of ammonium phosphate on the formation of crystal copper sulfide on chrysocolla surfaces and its response to flotation, Miner. Eng., 155(2020), art. No. 106300. doi: 10.1016/j.mineng.2020.106300
    [21]
    S.J. Bai, C.L. Li, X.Y. Fu, Z. Ding, and S.M. Wen, Promoting sulfidation of smithsonite by zinc sulfide species increase with addition of ammonium chloride and its effect on flotation performance, Miner. Eng., 125(2018), p. 190. doi: 10.1016/j.mineng.2018.03.040
    [22]
    X. Bai, J. Liu, S.M. Wen, Y. Wang, and Y.L. Lin, Effect of ammonium salt on the stability of surface sulfide layer of smithsonite and its flotation performance, Appl. Surf. Sci., 514(2020), art. No. 145851. doi: 10.1016/j.apsusc.2020.145851
    [23]
    P.L. Shen, D.W. Liu, X.L. Zhang, X.D. Jia, K.W. Song, and D. Liu, Effect of (NH4)2SO4 on eliminating the depression of excess sulfide ions in the sulfidization flotation of malachite, Miner. Eng., 137(2019), p. 43. doi: 10.1016/j.mineng.2019.03.015
    [24]
    Q.C. Feng, W.J. Zhao, and S.M. Wen, Surface modification of malachite with ethanediamine and its effect on sulfidization flotation, Appl. Surf. Sci., 436(2018), p. 823. doi: 10.1016/j.apsusc.2017.12.113
    [25]
    Q. Zhang, Y.J. Wang, Q.C. Feng, S.M. Wen, Y.W. Zhou, W.L. Nie, and J.B. Liu, Identification of sulfidization products formed on azurite surfaces and its correlations with xanthate adsorption and flotation, Appl. Surf. Sci., 511(2020), art. No. 145594. doi: 10.1016/j.apsusc.2020.145594
    [26]
    Q. Zhang, S.M. Wen, Q.C. Feng, and S. Zhang, Surface characterization of azurite modified with sodium sulfide and its response to flotation mechanism, Sep. Purif. Technol., 242(2020), art. No. 116760. doi: 10.1016/j.seppur.2020.116760
    [27]
    Q.Y. Sheng, W.Z. Yin, B. Yang, S.H. Cao, H.R. Sun, Y.Q. Ma, and K.Q. Chen, Improving surface sulfidization of azurite with ammonium bisulfate and its contribution to sulfidization flotation, Miner. Eng., 171(2021), art. No. 107072. doi: 10.1016/j.mineng.2021.107072
    [28]
    M. Finšgar, Surface analysis by gas cluster ion beam XPS and ToF-SIMS tandem MS of 2-mercaptobenzoxazole corrosion inhibitor for brass, Corros. Sci., 182(2021), art. No. 109269. doi: 10.1016/j.corsci.2021.109269
    [29]
    H. Lai, J.S. Deng, Q.J. Liu, S.M. Wen, and Q. Song, Surface chemistry investigation of froth flotation products of lead–zinc sulfide ore using ToF-SIMS and multivariate analysis, Sep. Purif. Technol., 254(2021), art. No. 117655. doi: 10.1016/j.seppur.2020.117655
    [30]
    H. Lai, Q.J. Liu, J.S. Deng, S.M. Wen, and Z.L. Liu, Surface chemistry study of Cu–Pb sulfide ore using ToF-SIMS and multivariate analysis, Appl. Surf. Sci., 518(2020), art. No. 146270. doi: 10.1016/j.apsusc.2020.146270
    [31]
    S.J. Bai, P. Yu, Z. Ding, Y.X. Bi, C.L. Li, D.D. Wu, and S.M. Wen, New insights into lead ions activation for microfine particle ilmenite flotation in sulfuric acid system: Visual MINTEQ models, XPS, and ToF-SIMS studies, Miner. Eng., 155(2020), art. No. 106473. doi: 10.1016/j.mineng.2020.106473
    [32]
    V.S.G. Krishna and M.G. Mahesha, XPS analysis of ZnS0.4Se0.6 thin films deposited by spray pyrolysis technique, J. Electron Spectrosc. Relat. Phenom., 249(2021), art. No. 147072. doi: 10.1016/j.elspec.2021.147072
    [33]
    B.V. Crist, The XPS library website: A resource for the XPS community including - The XPS library of information, XPS spectra-base having >70,000 monochromatic XPS spectra, and spectral data processor (SDP) v8.0 software, J. Electron Spectrosc. Relat. Phenom., 248(2021), art. No. 147046. doi: 10.1016/j.elspec.2021.147046
    [34]
    Y. Kubo, Y. Sonohara, and S. Uemura, Changes in the chemical state of metallic Cr during deposition on a polyimide substrate: Full soft XPS and ToF-SIMS depth profiles, Appl. Surf. Sci., 553(2021), art. No. 149437. doi: 10.1016/j.apsusc.2021.149437
    [35]
    G. Han, S.M. Wen, H. Wang, and Q.C. Feng, Surface sulfidization mechanism of cuprite and its response to xanthate adsorption and flotation performance, Miner. Eng., 169(2021), art. No. 106982. doi: 10.1016/j.mineng.2021.106982
    [36]
    H.Q. Peng, D. Wu, and M. Abdelmonem, Flotation performances and surface properties of chalcopyrite with xanthate collector added before and after grinding, Results Phys., 7(2017), p. 3567. doi: 10.1016/j.rinp.2017.09.028
    [37]
    G. Han, S.M. Wen, H. Wang, and Q.C. Feng, Effect of ferric ion on cuprite surface properties and sulfidization flotation, Sep. Purif. Technol., 278(2021), art. No. 119573. doi: 10.1016/j.seppur.2021.119573
    [38]
    C.L. Li, S.J. Bai, Z. Ding, P. Yu, and S.M. Wen, Visual MINTEQ model, ToF-SIMS, and XPS study of smithsonite surface sulfidation behavior: Zinc sulfide precipitation adsorption, J. Taiwan Inst. Chem. Eng., 96(2019), p. 53. doi: 10.1016/j.jtice.2018.11.021
    [39]
    J.J. Luo, Q. Niu, M.C. Jin, Y.N. Cao, L.R. Ye, and R.P. Du, Study on the effects of oxygen-containing functional groups on Hg0 adsorption in simulated flue gas by XAFS and XPS analysis, J. Hazard. Mater., 376(2019), p. 21. doi: 10.1016/j.jhazmat.2019.05.012
    [40]
    S. Krainer and U. Hirn, Contact angle measurement on porous substrates: Effect of liquid absorption and drop size, Colloids Surf. A, 619(2021), art. No. 126503. doi: 10.1016/j.colsurfa.2021.126503
    [41]
    G. Huminic, A. Huminic, F. Dumitrache, C. Fleaca, and I. Morjan, Experimental study on contact angle of water based Si–C nanofluid, J. Mol. Liq., 332(2021), art. No. 115833. doi: 10.1016/j.molliq.2021.115833
    [42]
    Y.J. Yang, L.Y. Zhang, Y.L. Zhu, G.T. Wei, Z.M. Li, and R.L. Mo, Three-dimensional photoelectrocatalytic degradation of ethyl xanthate catalyzed by activated bentonite-based bismuth ferrites particle electrodes: Influencing factors, kinetics, and mechanism, J. Environ. Chem. Eng., 9(2021), No. 4, art. No. 105559. doi: 10.1016/j.jece.2021.105559
    [43]
    G.C. Zhu, J.F. Liu, J. Yin, Z.W. Li, B.Z. Ren, Y.J. Sun, P. Wan, and Y.S. Liu, Functionalized polyacrylamide by xanthate for Cr(VI) removal from aqueous solution, Chem. Eng. J., 288(2016), p. 390. doi: 10.1016/j.cej.2015.12.043
    [44]
    Z.L. Li, Y. Kong, and Y.Y. Ge, Synthesis of porous lignin xanthate resin for Pb2+ removal from aqueous solution, Chem. Eng. J., 270(2015), p. 229. doi: 10.1016/j.cej.2015.01.123
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Share Article

    Article Metrics

    Article Views(1152) PDF Downloads(50) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return